LSF Programmer's Guide

Version 3.2
Fourth Edition, August 1998

Platform Computing Corporation

LSF Programmer’s Guide

Copyright © 1994-1998 Platform Computing Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, electronically stored, or reduced to machine readable form without prior
written consent from Platform Computing Corporation.

Although the material contained herein has been carefully reviewed, Platform Computing
Corporation does not warrant it to be free of errors or omissions. Platform Computing
Corporation reserves the right to make corrections, updates, revisions or changes to the
information contained herein.

UNLESS PROVIDED OTHERWISE IN WRITING BY PLATFORM COMPUTING
CORPORATION, THE PROGRAM DESCRIBED HEREIN IS PROVIDED AS IS WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
ANY LOST PROFITS OR LOST SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO
USE THIS PROGRAM.

LSF, LSF Base, LSF Batch, LSF JobScheduler, LSF MultiCluster, LSF Make, LSF Analyzer, LSF
Parallel, Platform Computing, and the Platform Computing and LSF logos are trademarks of

Platform Computing Corporation.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Printed in Canada

LSF Programmer’s Guide iii

Revision Information for LSF Programmer’s Guide

Edition Description
First This document describes the Application Programming Interfaces of LSF
version 2.2

Second Revised and redesigned to describe LSF 3.0
Third Revised and redesigned to describe LSF 3.1

Fourth Revised to describe the new features of LSF 3.2

Contents

Preface iX
AUIBNCE . . . iX

LSF SUItE 3.2 . iX

Related DOCUMENTSot e e X
Technical AsSIStance xi
1-IntroducCtion. 1
LSF Product Suite and Architecture i 1

LSF Base SysStemo 3
Application and LSF Base Interactions, 4

LSF Batch System e 5

LSF JobScheduler System 7

LSF AP SEIVICES ..ottt 7

LSF Base API SEIrVICESottt 7

LSF Batch API Servicest 10

Getting Started with LSF Programming.t 12
Isf.conf File.. 12
LSFHeader Files.o 12

Linking Applicationswith LSFAPIs. o it 13

Error Handling 14

Example Applications. 15
Example Applicationusing LSLIB. i, 15

Example Application using LSBLIB. 16
Authentication 17
2-Programming with LSLIB. 19
Getting Configuration Information. 19
Getting General Cluster Configuration Information................. 19

Getting Host Configuration Information 22

Handling Default Resource Requirementsccoovun.. 26

Getting Dynamic Load Information 28
Getting Dynamic Host-Based Resource Information 28

LSF Programmer’s Guide \%

Contents

Getting Dynamic Shared Resource Information 32
Making a Placement DecCisionttt 36
Getting Task Resource Requirements. ... 38
Using Remote EXeCUtion SErVICESo vt 40

Remote Execution Mechanisms o ... 40

Initializing an Application for Remote Execution................... 42

RunningaTask Remotely 43

3-Programming with LSBLIB. 47
Initializing LSF Batch Applications. o ... 47
Getting Information about LSF Batch Queues. 48
Getting Information about LSF Batch Hosts 52
Job Submission and Modification i 56
Getting Information about Batch Jobs. L. 63

LSFBatchJob ID 64
Job Manipulation 70

SendingaSignal Toalob i i 71

Switching a Job To a Different Queue co... 72

ForcingaJobtoRUN. 73
Processing LSFBatch Log Files i 75

4 - Advanced Programming TOPICS.o vt i it e 83
Getting Load Information on Selected Load Indices 83

Gettinga Listof All Load Index Names 83

Displaying Selected Load Indices., 84
Writing a Parallel Application............. i 86

I's rtask() Function........... i 87

Running Tasks on Many Machinesc..... 88
Finding out Why the Job Is Still Pending. 90
Reading | sf.conf Parameters............... ... iiiiiiiiiinn.. 91
Signal Handling in Windows NT i 93

Job Control in a Windowed Application. 94

Job Control in a Console Application 97

A -Listof LSF APILFUNCHIONS 99
LSLIB FUNCLIONS . . oottt e e e e e e 99

Cluster Configuration Information 99

Load Information and Placement Advice. 100

Task List Manipulation i 101

Remote Execution and Task Control 101

Vi

Remote FileOperation. e 103
Administration Operation. ...t 104
ErrorHandling i 104
Miscellaneous 104
LSBLIB FUNCLIONS.ottt e e e e 105
Initialization. 105
LSF Batch System Information................. 105

Job Manipulation 106
Job Information. 106
Event File Processingcovvii e 107
LSF Batch Administration.......... i, 107
Calendar Manipulation i i 107
ErrorHandling i e 108
INdeX . .. 109

LSF Programmer’s Guide vii

Contents

viii

Preface

Audience

This guide provides tutorial and reference information for programmers who want to
create programs that use the features of the Load Sharing Facility (LSF) software.

You should be familiar with the concepts described in the LSF User’s Guide as well as
with C programming in UNIX and/or Windows NT environments. If you are going to
write programs using the calendars and events of the LSF JobScheduler, you should
also be familiar with the LSF JobScheduler User’s Guide.

LSF Suite 3.2

LSF is a suite of workload management products including the following:

LSF Batch is a batch job processing system for distributed and heterogeneous
environments, which ensures optimal resource sharing.

LSF JobScheduler is a distributed production job scheduler that integrates
heterogeneous servers into a virtual mainframe or virtual supercomputer

LSF MultiCluster supports resource sharing among multiple clusters of computers
using LSF products, while maintaining resource ownership and cluster autonomy.

LSF Analyzer is a graphical tool for comprehensive workload data analysis. It
processes cluster-wide job logs from LSF Batch and LSF JobScheduler to produce
statistical reports on the usage of system resources by users on different hosts through
various queues.

LSF Programmer’s Guide iX

Preface

LSF Parallel is a software product that manages parallel job execution in a production
networked environment.

LSF Make is a distributed and parallel Make based on GNU Make that simultaneously
dispatches tasks to multiple hosts.

LSF Base is the software upon which all the other LSF products are based. It includes
the network servers (LIM and RES), the LSF API, and load sharing tools.

There are two editions of the LSF Suite:
LSF Enterprise Edition

Platform’s LSF Enterprise Edition provides a reliable, scalable means for organizations
to schedule, analyze, and monitor their distributed workloads across heterogeneous
UNIX and Windows NT computing environments. LSF Enterprise Edition includes all
the features in LSF Standard Edition (LSF Base and LSF Batch), plus the benefits of LSF
Analyzer and LSF MultiCluster.

LSF Standard Edition

The foundation for all LSF products, Platform’s Standard Edition consists of two
products, LSF Base and LSF Batch. LSF Standard Edition offers users robust load
sharing and sophisticated batch scheduling across distributed UNIX and Windows NT
computing environments.

Related Documents

The following guides are available from Platform Computing Corporation:

LSF Installation Guide

LSF Batch Administrator’s Guide

LSF Batch Administrator’s Quick Reference
LSF Batch User’s Guide

LSF Batch User’s Quick Reference

LSF JobScheduler Administrator’s Guide
LSF JobScheduler User’s Guide

LSF Analyzer User’s Guide
LSF Parallel User’s Guide
LSF Programmer’s Guide

Online Documentation

= Man pages (accessed with the man command) for all commands
= Online help available through the Help menu for the x| sbat ch, xbnod, xbsub,
xbal ar ns, xbcal and x| sadmi n applications.

Technical Assistance

If you need any technical assistance with LSF, please contact your reseller or Platform
Computing’s Technical Support Department at the following address:

LSF Technical Support

Platform Computing Corporation
3760 14th Avenue

Markham, Ontario

Canada L3R 3T7

Tel: +1 905 948 8448

Toll-free: 1-87PLATFORM (1-877-528-3676)
Fax: +1 905 948 9975

Electronic mail: support@platform.com

Please include the full name of your company.

You may find the answers you need from Platform Computing Corporation’s home
page on the World Wide Web. Point your browser to www.platform.com.

If you have any comments about this document, please send them to the attention of
LSF Documentation at the address above, or send email to doc@platform.com.

LSF Programmer’s Guide Xi

1 Introduction

This chapter gives an overview of the LSF system architecture and the load sharing
services provided by the LSF API, introducing their components. It also demonstrates
how to write, compile, and link a simple load sharing application using LSF.

LSF Product Suite and Architecture

LSF is a layer of software services on top of UNIX and Windows NT operating systems.
LSF creates a single system image on a network of heterogeneous computers such that
the whole network of computing resources can be utilized effectively and managed
easily. Throughout this guide, LSF refers to the LSF suite, which contains the following
products:

LSF Base

LSF Base provides the basic load-sharing services across a heterogeneous
network of computers. It is the base software upon which all other LSF
functional products are built. It provides services such as resource
information, host selection, placement advice, transparent remote execution
and remote file operation, etc.

LSF Base includes Load Information Manager (LIM), Remote Execution Server
(RES), the LSF Base API, | st ool s that allow the use of LSF Base to run simple
load-sharing applications, | st csh, and | snake.

LSF Batch
LSF Batch is a distributed batch queuing system built on top of the LSF Base.

The services provided by LSF Batch are extensions to the LSF Base services.
LSF Batch makes a computer network a network batch computer. It has all the

LSF Programmer’s Guide 1

1 Introduction

features of a mainframe batch job processing system while doing load
balancing and policy-driven resource allocation control.

LSF Batch relies on services provided by the LSF Base. It makes use of the
resource and load information from the LIM to do load balancing. LSF Batch
also uses the cluster configuration information from LIM and follows the
master election service provided by LIM. LSF Batch uses RES for interactive
batch job execution and uses the remote file operation service provided by RES
for file transfer. LSF Batch includes a Master Batch Daemon (nbat chd)
running on the master host and a slave Batch Daemon (sbat chd) running on
each batch server host.

LSF JobScheduler

LSF JobScheduler is a network production job scheduling system that
automates the mission-critical activities of a MIS organization. It provides
reliable job scheduling on a heterogeneous network of computers with
centralized control. LSF JobScheduler reacts to calendars and events to
schedule jobs at the correct time on the correct machines.

Like LSF Batch, LSF JobScheduler is built on top of the LSF Base. It relies on
LSF Base in resource matching, job placement, cluster configuration, and
distributed file operation. LSF JobScheduler supports calendars, file events,
and user defined events in scheduling production jobs.

LSF MultiCluster

LSF MultiCluster extends the capabilities of the LSF system by sharing the
resources of an organization across multiple cooperating clusters of
computers. Load sharing happens not only within the clusters but also among
them. Resource ownership and autonomy is enforced, non-shared user
accounts and file systems are supported, and communication limitations
among the clusters are also considered in job scheduling.

LSF consists of a number of servers running as root on each participating host in an LSF
cluster and a comprehensive set of utilities built on top of the LSF Application
Programming Interface (API). The LSF API consists of two libraries:

= Basic LSF services are accessible to applications through LSLIB, the LSF Base
library.

= Job scheduling and processing services are accessible through LSF Batch library,
LSBLIB. This library allows applications to get services from LSF Batch and LSF
JobScheduler.

LSF Base System

Figure 1 shows the components of the LSF Base and their relationship.

Figure 1. LSF Base Architecture

LSLIB LSF Base System API

Load Information Manager Remote Execution Server LSF Server Daemons

Cray Digital HP-UX/ IBM Linux SGlI SunOS/ lwindows Operating Systems
UNICOSHl| ALPHA HPPA AIX IRIX Solaris NT

LSF Base consists of two servers, the Load Information Manager (LIM) and the Remote
Execution Server (RES), and the Load Sharing Library (LSLIB). LSF Base provides the
basic load sharing services across a heterogeneous network of computers.

An LSF server host is a host that runs load-shared jobs. The LIM and RES run on every
LSF server host. They interface directly with the underlying operating systems and
provide users with a uniform, host independent environment.

One of the LIMs acts as the master. The master LIM is chosen among all the LIMs
running in the cluster based on the configuration file settings. If the master LIM
becomes unavailable, the LIM on the next configured host will automatically take over.

The LIM on each host monitors its host's load and reports load information to the
master LIM. The master LIM collects information from all hosts and provides that
information to the applications.

The RES on each server host accepts remote execution requests and provides fast,
transparent, and secure remote execution of tasks.

LSF Programmer’s Guide 3

1 Introduction

Application and LSF Base Interactions

The diagram below shows the typical interactions between an LSF application and the

LSF Base.

Figure 2. LIM, RES, LSLIB and Applications

f Local Host

N

LIM

Application

Re

|

LSLIB |

L

N

(Remote Host |
- RES
L' LIM
Remote
Tasks

\ Master Host

T

LIM

|———

T
[)

Other LIMs

In order to find out the information about the LSF clusters, an application calls the
information service functions in the LSLIB which then contact the LIM to get the
information. If the information requested is only available from the master LIM, then
LSLIB will automatically send the request to the master host.

To run a task remotely, or to perform a file operation remotely, an application calls the
remote execution or remote file operation service functions in the LSLIB, which then
contact the RES to get the services.

The LIM on individual machines communicate periodically to update the
information they provide to the applications.

LSF Batch System

LSF Batch is a layered distributed load sharing batch system built on top of the LSF
Base. The services provided by LSF Batch are extensions to the LSF Base services.
Application programmers can access the batch services through the LSF Batch Library,
LSBLIB.

Figure 3. Structure of LSF Batch System

LSBLIB LSF Batch API
mbatchd [sbatchd Server Daemons
LSF Services LSF Base System

LSF Batch accepts user jobs and holds them in queues until suitable hosts are available.
LSF Batch runs user jobs on LSF Batch server hosts, those hosts that a site deems
suitable for running batch jobs.

LSF Batch services are provided by one nbat chd (master batch daemon) running in
each LSF cluster, and one sbhat chd (slave batch daemon) running on each batch server
host.

LSF Programmer’s Guide 5

1 Introduction

LSF Batch operation relies on the services provided by the LSF Base. LSF Batch contacts
the master LIM to get load and resource information about every batch server host.

Figure 4. The Operation of LSF Batch System

Master LIM

nbat chd always runs on the host where master LIM runs. The sbat chd on the master
host automatically starts the nbat chd. If the master LIM moves to a different host, the
current nbat chd will automatically resign and a new nbat chd will be automatically
started on the new master host.

User jobs are held in batch queues by nbat chd, which checks the load information on
all candidate hosts periodically. When a host with the necessary resources becomes
available, nbat chd sends a job to the sbat chd on that host for execution. When more
than one host is available, the best host is chosen.

Once a job is sent to an sbat chd, that sbat chd controls the execution of the job and
reports job status to nbat chd.

The log files store important system and job information so that a newly started
nmbat chd can restore the status of the previous mbat chd easily. The log files also
provide historic information about jobs, queues, hosts, and LSF Batch servers.

LSF JobScheduler System

LSF JobScheduler shares the same architecture and job processing mechanism. In
addition to services provided by LSF Batch, LSF JobScheduler also provides calendar
and event processing services. Both LSF Batch and LSF JobScheduler provides API to
applications via LSBLIB.

Note

In the reminder of this Guide, all descriptions about LSF Batch also apply to LSF
JobScheduler unless explicitly stated otherwise.

LSF API Services

LSF services are natural extensions to operating system services. LSF services glue
heterogeneous operating systems into a single, integrated computing system.

LSF APIs provide easy access to the services of LSF servers. The API routines hide the
details of interactions between the application and LSF servers in a way that is
platform independent.

LSF APIs have been used to build numerous load sharing applications and utilities.

Some examples of applications built on top of the LSF APIs are | snake, | st csh,
| srun, LSF Batch user interface, and x| sron.

LSF Base API Services

The LSF Base API (LSLIB) allows application programmers to get services provided by
LIM and RES. The services include:

LSF Programmer’s Guide 7

1 Introduction

Configuration Information Service

This set of function calls provide information about the LSF cluster configuration, such
as hosts belonging to the cluster, total amount of installed resources on each host (for
example, number of CPUs, amount of physical memory, and swap space), special

resources associated with individual hosts, and types and models of individual hosts.

Such information is static and is collected by LIMs on individual hosts. By calling these
routines, an application gets a global view of the distributed system. This information
can be used for various purposes. For example, the LSF command | shost s displays
such information on the screen. LSF Batch also uses such information to know how
many CPUs are on each host.

Flexible options are available for an application to select the information that is of
interest to it.

Dynamic Load Information Service

This set of function calls provide comprehensive dynamic load information collected
from individual hosts periodically. The load information is provided in the form of
load indices detailing the load on various resources of each host, such as CPU,
memory, 1/0, disk space, and interactive activities. Since a site-installed External LIM
(ELIM) can be optionally plugged into the LIM to collect additional information that is
not already collected by the LIM, this set of services can be used to collect virtually any
type of dynamic information about individual hosts.

Example applications that use such information include | sl oad, | smon, and x| sron.
This information is also valuable to an application in making intelligent job scheduling
decisions. For example, LSF Batch uses such information to decide whether or not a job
should be sent to a host for execution.

These service routines provide powerful mechanism for selecting the information that
is of interest to the application.

Placement Advice Service

LSF Base API provides functions to select the best host among all the hosts. The
selected host can then be used to run a job or to login to. LSF provides flexible syntax
for an application to specify the resource requirements or criteria for host selection and
sorting.

Many LSF utilities use these functions for placement decisions, such as | sr un,
| smake, and | sl ogi n. Itis also possible for an application to get the detailed load
information about the candidate hosts together with a preference order of the hosts.

A parallel application can ask for multiple hosts in one LSLIB call for the placement of
a multi-component job.

The performance differences between different models of machines as well as the
number of CPUs on each host are taken into consideration when placement advice is
made, with the goal of selecting qualified host(s) that will provide the best
performance.

Task List Manipulation Service

Task lists are used to store default resource requirements for users. LSF provides
functions to manipulate the task lists and retrieve resource requirements for a task.
This is important for applications that need to automatically pick up the resource
requirements from user’s task list. The LSF commands| srt asks uses these functions
to manipulate user’s task list. LSF utilities such as| st csh, | srun, and bsub
automatically pick up the resource requirements of the submitted command line by
calling these LSLIB functions.

Master Selection Service

If your application needs some kind of fault tolerance, you can make use of the master
selection service provided by the LIM. For example, you can run one copy of your
application on every host and only allow the copy on the master host to be the primary
copy and others to be backup copies. LSLIB provides a function that tells you the name
of the current master host.

LSF Batch uses this service to achieve improved availability. As long as one host in the
LSF cluster is up, LSF Batch service will continue.

Remote Execution Service

The remote execution service provides a transparent and efficient mechanism for

running sequential as well as parallel jobs on remote hosts. The services are provided
by the RES on the remote host in cooperation with the Network 170 Server (NIOS) on
the local host. The NIOS is a per application stub process that handles the details of the

LSF Programmer’s Guide 9

1 Introduction

terminal 170 and signals on the local side. NIOS is always automatically started by the
LSLIB as needed.

RES runs as root and runs tasks on behalf of all users in the LSF cluster. Proper
authentication is handled by RES before running a user task.

LSF utilities such as | srun, | sgrun, ch,| snake, and | st csh use the remote
execution service.

Remote File Operation Service

The remote file operation service allows load sharing applications to operate on files
stored on remote machines. Such services extend the UNIX and Windows NT file
operation services so that files that are not shared among hosts can also be accessed by
distributed applications transparently.

LSLIB provides routines that are extensions to the UNIX and Windows NT file
operations such as open(2), cl ose(2),read(2), wri t e(2), f seek(3), st at (2), etc.

The LSF utility | sr cp isimplemented with the remote file operation service functions.
Administration Service

These set of function calls allow application programmers to write tools for
administrating the LSF servers. The operations include reconfiguring the LSF clusters,
shutting down a particular LSF server on some host, restarting an LSF server on some

host, turning logging on or off, locking/Zunlocking a LIM on a host, etc.

The |l sadmi n and x| sadm n utilities use the administration services.
LSF Batch API Services

The LSF Batch API, LSBLIB, gives application programmers access to the job queueing
processing services provided by the LSF Batch servers. All LSF Batch user interface
utilities are built on top of LSBLIB. The services that are available through LSBLIB
include:

10

LSF Batch System Information Service

This set of function calls allow applications to get information about LSF Batch system
configuration and status. These include host, queue, and user configurations and
status.

The batch configuration information determines the resource sharing policies that
dictate the behavior of the LSF Batch scheduling.

The system status information reflects the current status of hosts, queues, and users of
the LSF Batch system.

Example utilities that use the LSF Batch configuration information services are
bhost s, bqueues, buser s, bpar ans, and x| sbat ch.

Job Manipulation Service
The job manipulation service allows LSF Batch application programmers to write
utilities that operate on user jobs. The operations include job submission, signaling,

status checking, checkpointing, migration, queue switching, and parameter
modification.

Log File Processing Service

LSBLIB provides convenient routines for handling log files used by LSF Batch. These
routines return the records logged in the | sb. event s and | sb. acct files. The
records are stored in well-defined data structures.

The LSF Batch commands bhi st and bacct are implemented with these routines.

LSF Batch Administration Service

This set of function calls are useful for writing LSF Batch administration tools. The LSF
Batch command badm n is implemented with these library calls.

Calendar Manipulation Service
These library calls are used only if you are using the Production Job Scheduler of LSF

(LSF JobScheduler). These function calls allow programmers to write utilities that
create, check, or change LSF Batch calendars. All the calendar-related user interface

LSF Programmer’s Guide 11

1 Introduction

commands of the LSF JobScheduler make use of the calendar manipulation functions
of the LSF Batch API.

Getting Started with LSF Programming

LSF programming is like any other system programming. You are assumed to have
UNIX and/or Windows NT operating system and C programming knowledge to
understand the concepts involved.

| sf. conf File

This guide frequently refers to the file, | sf. conf, for the definition of some
parameters. | sf. conf is a generic reference file containing definitions of directories
and parameters. It is by default installed in/ et c. Ifitis not installed in/ et c, all users
of LSF must set the environment variable LSF_ENVDI R to point to the directory in
which | sf. conf is installed. Refer to ‘LSF Base Configuration Reference’ in the LSF
Administrator’s Guide for more details about the | sf . conf file.

LSF Header Files

All LSF header files are installed in the directory LSF_| NCLUDEDI R/ | sf, where
LSF_| NCLUDEDI Ris defined in the file | sf. conf. You should include

LSF_| NCLUDEDI Rin the include file search path, such as that specified by the
-1dir’ option of some compilers or pre-processors.

There is one header file for LSLIB, the LSF Base API, and one header file for LSBLIB,
the LSF Batch API.

Isf.h
An LSF application must include <Isf/lsf.h> before any of the LSF Base API

services are called. Isf.h contains definitions of constants, data structures, error
codes, LSLIB function prototypes, macros, etc., that are used by all LSF applications.

12

| sbat ch. h

An LSF Batch application must include <I sf /| sbat ch. h> before any of the LSF
Batch API services are called. | sbat ch. h contains definitions of constants, data
structures, error codes, LSBLIB function prototypes, macros, etc., that are used by all
LSF Batch applications.

Note
There is no need to explicitly include <I sf /| sf . h>in an LSF Batch application
because | sbat ch. h already includes <I sf /1 sf. h>.

Linking Applications with LSF APIs

LSF API functions are contained in two libraries: | i bl sf. a (LSLIB)and | i bbat . a
(LSBLIB) for all UNIX platforms. For Windows NT, the file names of these libraries are:
liblsf.lib (LSLIB)andli bbat.|ib (LSBLIB), respectively. These files are
installed in LSF_LI BDI R, where LSF_LI BDI Ris defined in the file | sf. conf.

Note
LSBLIB is not independent by itself. It must always be linked together with LSLIB.
This is because LSBLIB services are built on top of LSLIB services.

LSF uses BSD sockets for communications across the network. On systems that have
both System V and BSD programming interfaces, LSLIB and LSBLIB typically use the
BSD programming interface. On System V-based versions of UNIX, for example
Solaris, it is normally necessary to link applications using LSLIB or LSBLIB with the
BSD compatibility library. On Windows NT, a number of libraries are needed to be
linked together with LSF API. Details of these additional linkage specifications are
shown in the table below.

Table 1. Additional Linkage Specifications by Platform

Platform Additional Linkage Specifications
ULTRIX 4 (none)
Digital UNIX | -l mach -1 d
HP-UX -1 BSD
AIX -1 bsd

LSF Programmer’s Guide 13

1 Introduction

Table 1. Additional Linkage Specifications by Platform

Platform Additional Linkage Specifications

IRIX 5 -lsun -lc_s

IRIX 6 (none)

SunOS 4 (none)

Solaris 2 -lnsl -lelf -1socket -lrpcsvc -lgen

NEC -Insl -lelf -1socket -lrpcsvc -Igen

Sony NEWSs |-lc -Insl -lelf -lsocket -Irpcsvec -1gen -1uch

ConvexOS (none)

Cray Unicos | (none)

Linux (none)

Windows NT | -MI -DWN32 libcnt.lib oldnanes.lib kernel 32.1ib
advapi 32.1ib user32.1ib wsock32.lib npr.lib
netapi 32.1ib

Note

On Windows NT, you need to add paths specified by LSF_LI BDI Rand

LSF | NCLUDEDI Rinl sf. conf totheenvironmentvariables LI Band | NCLUDE,

respectively.

The $LSF_M SC/ exanpl es directory contains a makefile for making all the example
programs in that directory. You can modify this file for use with your own programs.

All LSLIB function call names start with ‘| s_’, whereas all LSBLIB function call names
start with ‘I sb_".

Error Handling

LSF APl uses error numbers to indicate an error. There are two global variables that are
accessible from the application. These variables are used in exactly the same way UNIX

system call error number variable er r no is used. The error number should only be
tested when an LSLIB or LSBLIB call fails.

14

| serrno

An LSF program should test whether an LSLIB call is successful or not by checking the
return value of the call instead of | serr no.

When any LSLIB function call fails, it sets the global variable | ser r no to indicate the
cause of the error. The programmer can either call | s_perr or () to print the error
message explicitly tothe st derr,orcalll s_sysnsg() togetthe error message string
corresponding to the current value of | serr no.

Possible values of | serr no are defined in | sf. h.

| sberrno

This variable is very similar to | serr no except that it is set by LSBLIB whenever an
LSBLIB call fails. Programmers can either call | sb_perror () to find out why an
LSBLIB call failed orusel sb_sysnsg() togetthe error message corresponding to the
current value of | sberr no.

Possible values of | sber r no are defined in | sbat ch. h.

Note
I serrno and | sberr no should be checked only if an LSLIB or LSBLIB call fails
respectively.

Example Applications

Example Application using LSLIB

#i ncl ude <stdi o. h>
#i ncl ude <l sf/lsf. h>

voi d nmain()
{

char *cl ust er nang;

clusternane = | s_getcl ust er nane();
if (clusternane == NUL) {

LSF Programmer’s Guide 15

1 Introduction

Is_perror(‘is_getclustername”);
exit(-1);
}

printf(“My cluster name is: <%s>\n", clustername);
exit(0);
}

This simple example gets the name of the LSF cluster and prints it on the screen. The
LSLIB function call | s_get cl ust er nane() returns the name of the local cluster. If
this call fails, it returns a NULL pointer. | s_perror () prints the error message
corresponding to the most recently failed LSLIB function call.

The above program would produce output similar to the following:

%a. out
My cluster name is: <test cluster>

Example Application using LSBLIB

#include <stdio.h>
#include<lsf/isbatch.h>

main()
{
struct parameterinfo *parameters;

if (sb_init(NULL) < 0){
Isb_perror(‘isb_init’);
exit(-1);

}

parameters =Isb_parameterinfo(NULL, NULL, NULL);
if (parameters == NULL) {
Isb_perror(‘isb_parameterinfo”);
exit(-1);
}

* Got parameters from mbatchd successtfully. Now print out the fields */

printf(“Job acceptance interval: every %d dispatch turns\n”,
parameters->jobAcceptinterval);

* Code that prints other parameters goes here */

16

[* .0 =]
exit(0);
}

This example gets the LSF Batch parameters and prints them on the screen. The
function | sb_i ni t () must be called before any other LSBLIB function is called.

The data structure par anet er | nf o is defined in | sbat ch. h.

Authentication

LSF programming is distributed programming. Since LSF services are provided
network-wide, it is important for LSF to deliver the service without compromising the
system security.

LSF supports several user authentication protocols. Support for these protocols are
described in the section ‘Remote Execution Control’ of the LSF Administrator’s Guide.
Your LSF administrator can configure the LSF cluster to use any of the protocols
supported.

Note that only those LSF API function calls that operate on user jobs, user data, or LSF
servers require authentication. Function calls that return information about the system
do not need to be authenticated. LSF API calls that must be authenticated are identified
in ‘List of LSF API Functions’ on page 99.

The most commonly used authentication protocol, the privileged port protocol,
requires that load sharing applications be installed as setuid programs. This means
that your application has to be owned by root with the suid bit set.

If you need to frequently change and relink your applications with LSF API, you can

consider using the i dent protocol which does not require applications to be setuid
programs.

LSF Programmer’s Guide 17

2 Programming with LSLIB

This chapter provides simple examples that demonstrate the use of LSLIB functions in
an application. The function prototypes as well as data structures that are used by the
functions are described. Many of the examples resemble the implementation of the
existing LSF utilities.

Getting Configuration Information

One of the services that LSF provides to applications is cluster configuration
information service. This section describes how to get such services with a C program
using LSLIB.

Getting General Cluster Configuration Information

In the previous chapter, a very simple application was introduced that prints the name
of the LSF cluster. This section extends that example to print out more information
about the LSF cluster, namely, the current master host name and the defined resource
names in the cluster. It uses the following additional LSLIB function calls:

struct Islnfo *Is_info()
char *|s_get nast er nane()

The function| s_i nf o() returns a pointer to the following data structure (as defined
in<lsf/lsf.h>):

struct Isinfo {

int nRes; Number of resources in the system
struct resltem*resTabl g; A resltem for each resource in the system
i nt nTypes; Number of host types

char host Types[NAXTYPES] [MMXLSFNAMELEN] ; Host types

i nt nMbdel s; Number of host models

LSF Programmer’s Guide 19

2 Programming with LSLIB

char host Mdel s| MAXMIDELS] [AXLSFNAMELEN] ; Host models

float cpuFactor[MMAMIDELS] ; CPU factors of each host model
int num ndx; Total number of load indices inresl tem
int numusr | ndi x; Number of user-defined load indices

b

The function | s_get nmast er nane() returns a string containing the name of the
current master host.

Both of these functions return NULL on failure and set | ser r no to indicate the error.
The r es| t emstructure describes the valid resources defined in the LSF cluster:

struct resltem{

nane] MAXLSFNAMELEN ; The name of the resource

char des[MMXRESDESLEN ; The description of the resorce

enum val ueType val ueType; BOOLEAN NMER C STR NG

enum or der Type or der Type; INCR DECR NA

int flags; RESF BULTIN| RESF DYNAM C | RESF Q. (RAL
int interval; The update interval for a load index, in seconds

b

The constants MAXTYPES, MAXMODELS, and MAXLSFNAMELEN are defined in <I sf/
| sf. h> MAXLSFNAMELEN is the maximum length of a name in the LSF system.

A host type in LSF refers to a class of hosts that are considered to be compatible from
an application point of view. This is entirely configurable, although normally hosts
with the same architecture (binary compatible hosts) should be configured to have the
same host type.

Ahost model in LSF refers to a class of hosts with the same CPU performance. The CPU
factor of a host model should be configured to reflect the CPU speed of the model
relative to other host models in the LSF cluster.

Below is an example program that displays the general LSF cluster information using
the above LSLIB function calls.

#i ncl ude <stdio. h>
#i ncl ude <l sf/lsf. h>

nai n()

{

20

}

struct |slnfo *Islnfo;
char *cluster, *naster;
int i;

cluster = |s_getclusternane();

if (cluster == NULL) {
Is_perror(‘is_getclustername”);
exit(-1);

}

printf‘My cluster name is <%s>\n", cluster);

master = Is_getmastemame();

if (master == NULL) {
Is_perror(‘ls_getmastername”);
exit(-1);

}

printf(“Master host is <%s>\n", master);

Isinfo = Is_info();

if (sinfo == NULL) {
Is_perror(‘ls_info”);
exit(-1);

}

printf(n%-15.15s %s\n”, “RESOURCE_NAME", “DESCRIPTION);

for (i=0; i<lsinfo->nRes; i++)
printf(-15.15s %es\n”,

Isinfo->resTable[l.name, Isinfo->resTable[l].des);

exit(0);

Note

The above program will produce output similar to the following:

The returned data structure of every LSLIB function is dynamically allocated inside
LSLIB. This storage is automatically freed by LSLIB and re-allocated next time the
same LSLIB function is called. An application should never attempt to free the storage
returned by LSLIB. If you need to keep this information across calls, make your own
copy of the data structure. This applies to all LSLIB function calls.

%a. out
My cluster name is <test cluster>
Master host is <hostA>

RESOURCE_NAME DESCRIPTION

LSF Programmer’s Guide

2 Programming with LSLIB

r15s
rim
ri15m
ut

Py

io

I's

it

tnp
SWp
nem
ncpus
ndi sks
naxnem
NaxswWp
naxt np
cpuf
type
nodel
st at us
rexpri
server
sparc
hppa
bsd
Sysv
hpux
solaris
cs

f ddi

al pha

15-second CPU run queue | engt h
1-mnute CPU run queue length (alias: cpu)
15-minute CPU run queue | ength
1I-mnute CPU utilization (0.0 to 1.0)
Pagi ng rate (pages/ second)

D sk IOrate (Kbytes/second)

Nunber of login sessions (alias: |ogin)
Idle time (mnutes) (alias: idle)

D sk space in /tnp (Mytes)

Avai | abl e swap space (Mytes) (alias: swap)
Avai | abl e nenory (Myt es)

Nunber of CPUs

Nunber of |ocal disks

Maxi num nenory (Myt es)

Maxi num swap space (Myt es)

Maxi num/tnp space (Mytes)

CPU factor

Host type

Host nodel

Host status

Renote execution priority

LSF server host

SUN SPARC

HPPA architecture

BSD UN X

SystemV N X

HP- UX LN X

SN SOLAR' S

Conput e server

Hosts connected to the FDD

CEC al pha

Getting Host Configuration Information

Host configuration information describes the static attributes of individual hosts in the
LSF cluster. Examples of such attributes are host type, host model, number of CPUs,
total physical memory, and the special resources associated with the host. These
attributes are either read from the LSF configuration file, or found out by LIM on

starting up.

22

The host configuration information can be obtained by calling the following LSLIB
function:

struct host I nfo*l s_gethostinfo(resreq, numhosts, hostlist, |istsize, options)

The following parameters are used by this function:

char *resreq; Resource requirements that a host of interest must satisfy

int *nunhosts; If nunhost s is not NLLL, * nunhost s contains the size of the returned array
char **hostlist; An array of candidate hosts

int |istsize; Number of candidate hosts

int options; Options, currently only DFT_FROMIYPE

On success, this function returns an array containing a host | nf o structure for each
host of interest. On failure, it returns NULL and sets | ser r no to indicate the error.

The host | nf o structure is defined in| sf. h as

struct hostlnfo {
char host Nane[MAXHOSTNAMELEN ; Host name

char *host Type; Host type

char *host Mdel ; Host model

float cpuFactor; CPU factor of the host's CPUs

i nt nmaxQous; Number of CPUs on the host

int naxivem Size of physical memory on the host in MB

i nt naxsaap; Amount of swap space on the host in MB

i nt nmaxTnp Size of the / t np file system on the host in MB

int nD sk; Number of disks on the host

i nt nRes; Size of the r esour ces array

char **resources; An array of resources configured for the host

char *w ndows; Run windows of the host

i nt num ndx; Size of the busyThr eshol d array

float *busyThreshol d; Array of load thresholds for determining if the host is

busy

char isServer; TRUEf the host is a server, FALSE otherwise

char |icensed,; TRUEif the host has an LSF license, FALSE otherwise

i nt rexPriority; Default priority for remote tasks execution on the host
b
Note

On Solaris, when referencing MAXHOSTNAMELEN, net db. h must be included
before | sf. h orl sbat ch. h.

LSF Programmer’s Guide 23

2

Programming with LSLIB

The following example shows how to use the above LSLIB function in a program. This
example program displays the name, host type, total memory, number of CPUs and
special resources for each host that has more than 50MB of total memory.

#i ncl ude <netdb. h> /* Required for Solaris to reference MAXHOSTNAMELEN */
#include <l sf/lsf.h>
#i ncl ude <stdio. h>

nai n()

{

24

struct hostlnfo *hostinfo;
char *resreq;

i nt nunhosts = 0;
int options = 0;
i nt i, J;

resreq = “maxmem>50"
hostinfo = Is_gethostinfo(resreq, &numhosts, NULL, O, options);

if (hostinfo == NULL) {

Is_perror(‘ls_gethostinfo”);
exit(-10);
}
printf(‘There are %d hosts with more than 50MB total memonAn\n”,
numhosts);

printf(‘%6-11.11s %8.8s %6.6s %6.65 %9.9s\n",
“HOST_NAME", “type”, “maxMem”, ‘ncpus’, “RESOURCES");

for i = 0; i < numhosts; i++) {
printf(“%-11.11s %8.8s %8.0fM “, hostinfofi.hostName,
hostinfo[i].hostType);

if (hostinfofilmaxMem > 0)
printf(‘%6d *, hostinfofil.maxMem);

else F maxMem info not available for this host*/
printf(‘%66.6s “, “);

if (hostinfofilmaxCpus > 0)
printf("%6d *“, hostinfofil.maxCpus);

else /¥ ncpus is not known for this host*/
printf(‘%66.6s", “);

for (= 0; j < hostinfofl.nRes; j++)

printf(“ %s", hostinfofi].resources]));
printf(\n”);

}
exit(Q);
}

In the above example, r esr eq is the resource requirements used to select the hosts.
The variables you can use in a resource requirements must be the resource names
returned from | s_i nfo(). You can also run the | si nf o command to obtain a list of
valid resource names in your LSF cluster.

Note that NULL and O were supplied for the third and fourth parameters of the

I s_get hosti nfo() call. This causes all LSF hosts meeting r esr eq to be returned. If
a host list parameter is supplied with this call, the selection of hosts will be limited to
those belonging to the list.

If r esr eq is NULL, then the default resource requirements will be used. See ‘Handling
Default Resource Requirements’ on page 26 for details.

Note the test of max Memand max Cpus. The values of these fields (along with max Swap,
maxTnp and nDi sks) are determined when LIM starts on a host. If the host is
unavailable, the master LIM supplies a negative value.

The above example program produces output similar to the following:
%a. out
There are 4 hosts with nore than 50MB total nenory

HOST_NAME type maxMem ncpus RESCURCES

host A HPPA10 128M 1 hppa hpux cs
host B ALPHA 58M 2 al pha cs
host D ALPHA 72M 4 al pha fddi
host C SUNSCL 54M 1 sol aris fddi

LSLIB also provides functions simpler than | s_get host i nf o() to get frequently
used information. These functions include:

char *|s_get hosttype(host nare)
char *|s_get host nodel (host nane)

fl oat *|s_gethostf act or (host nane)

See ‘List of LSF API Functions’ on page 99 for more details about these functions.

LSF Programmer’s Guide 25

2 Programming with LSLIB

Handling Default Resource Requirements

Some LSLIB functions require a resource requirement parameter. This parameter is
passed to LIM for host selection. Itis important to understand how LSF handles default
resource requirements. See the LSF User’s Guide for further information about resource
requirements.

Itis desirable that LSF automatically assume default values for some key requirements
if they are not specified by the user.

The default resource requirements depend on the specific application context. For
example, the | sl oad command would assume ‘t ype==any or der[r 15s: pg]’as
the default resource requirements, while | sr un assumes ‘t ype==I ocal
order[r15s: pg]’ as the default resource requirements. This is because the user
usually expects | sl oad to show the load on all hosts, while, with | srun, a
conservative approach of running task on the same host type as the local host will in
most cases cause the task to be run on the correct host type.

LSLIB provides flexibility for the application programmer to decide what the default
behavior should be.

LSF default resource requirements contain two parts, a type requirement and an order
requirement. The former makes sure that the correct type of hosts are selected, while the
latter is used to order the selected hosts according to some reasonable criteria.

LSF appends a type resource requirement to the resource requirement string supplied by
an application in the following situations:

e resreqisNULL or an empty string.

= resreq does not contain a boolean resource, for example, ‘hppa’, and does not
contain a t ype or nodel resource, for example, ‘t ype==sol ari s’,
‘model ==HP715".

The default type requirement can be either ‘t ype==any’ or ‘t ype==$f ront ype’

depending on whether or not the flag DFT_FROMI'YPE is setin the opt i ons parameter
of the function call, where DFT_FROMIYPE is defined in | sf. h.

26

If DFT_FROMIYPE is set in the opt i ons parameter, the default type requirement is
‘t ype==%$f ront ype’. If DFT_FROMI'YPE is not set, then the default type requirement is
‘t ype==any’.

The value of f r ont ype depends on the function call. If the function has a f r omhost
parameter, then f r ont ype is the host type of the f r omhost . Otherwise, f r ont ype is
‘l ocal "

LSF also appends an order requirement, or der [r 15s: pg] , to the resource requirement
string if an order requirement is not already specified.

The table below lists some examples of how LSF appends the default resource

requirements.

Table 2. Examples of Default Resource Requirements

, Resource Requirement After Appending the Default
User’s Resource
Requirement DFT_FROMTYPE set DFT_FROMTYPE not set
NULL t ype==%fr ont ype t ype==any
order[r15s: pg] order[r15s: pg]
hpux hpux order[r15s: pg] hpux order[r15s: pg]
order[rlni t ype==$%$front ype type==any order[r1nj
order[rln
nmodel ==hp735 | nodel ==hp735 nodel ==hp735
order[r15s: pg] order[r15s: pg]
sparc sparc order[ls] sparc order[1s]
order[1s]
sSwp>25 && swp>25 && it>10 && swp>25 && it>10 &&
it>10 t ype==%fr ont ype t ype==any
order[r15s: pg] order[r15s: pg]
ncpus>1 ncpus>1 && ncpus>1 && type==any
order[ut] t ype==$front ype order[ut]
order[ut]

LSF Programmer’s Guide

27

2 Programming with LSLIB

Getting Dynamic Load Information

LSLIB provides several functions to obtain dynamic load information about hosts. The
dynamic load information is updated periodically by LIM. The definition of all
resources is stored in the st ruct | sl nf o data structure returned by the

I s_i nfo(3) API call (see ‘Getting General Cluster Configuration Information’ on
page 19 for details). We can classify LSF resources into two groups by resource
location, namely host-based resources and shared resources (see Chapter 2 of the LSF
Batch Administrator’s Guide for more information on host-based and shared resources).

Getting Dynamic Host-Based Resource Information

Dynamic host-based resources are frequently referred to as load indices, consisting of
11 built-in load indices and a number of external load indices. The built-in load indices
report load situation about the CPU, memory, disk subsystem, interactive activities,
etc. on each host. The external load indices are optionally defined by your LSF
administrator to collect additional host-based dynamic load information that is of
interest to your site. The LSLIB function that reports information about load indices is:

struct hostlLoad *|s_| cad(resreq, nunhosts, options, fronhost)

On success, this function returns an array containing a host Load structure for each
host of interest. On failure, it returns NULL and sets | ser r no to indicate the error.

This function has the following parameters:

char *resreq; Resource requirements that each host of interest must satisfy
int *nunhosts; *nunhost s initially contains the number of hosts requested

i nt opti ons; Option flags that affect the selection of hosts

char *fronhost; Used in conjunction with the DFT_FROMI'YPE option

The value of * nunmhost s determines how many hosts should be returned by this call.
If *nurmhost s is 0, information is requested on all hosts satisfying r esr eq. If
nunmhost s is NULL, load information is requested on one host. If nurrhost s is not
NULL, then on a successful return * numhost s will contain the number of host Load
structures returned.

28

2

The opt i ons argument is constructed from the bitwise inclusive OR of zero or more
of the option flags defined in <I sf /| sf. h>. The most commonly used flags are:

EXACT Exactly * nurrhost s hosts are desired. If EXACT is set, either exactly
*numhost s hosts are returned, or the call returns an error. If EXACT is not set,
then up to * numhost s hosts are returned. If * nunhost s is zero, then the
EXACT flag is ignored and as many hosts in the load sharing system as are
eligible (that is, those that satisfy the resource requirement) are returned.

OK_ONLY
Return only those hosts that are currently in the ok state. If OK_ONLY is set,
those hosts that are busy, | ocked, unl i censed or unavai | are not
returned. If OK_ONLY is not set, then some or all of the hosts whose status are
not ok may also be returned, depending on the value of * nunmhost s and
whether the EXACT flag is set.

NORMALI ZE
Normalize CPU load indices. If NORMALI ZE is set, then the CPU run queue
length load indices r 15s, r 1m and r 15mof each host returned are
normalized. See the LSF User’s Guide for different types of run queue lengths.
The default is to return the raw run queue length.

EFFECTI VE
If EFFECTI VE is set, then the CPU run queue length load indices of each host
returned are the effective load. The default is to return the raw run queue length.
The options EFFECTI VE and NORMALI ZE are mutually exclusive.

DFT_FROMI'YPE
This flag determines the default resource requirements. See ‘Handling Default
Resource Requirements’ on page 26 for details.

The f r omhost parameter is used when DFT_FROMIYPE is set in opti ons. If
fromhost is NULL, the local host is assumed.

LSF Programmer’s Guide 29

2 Programming with LSLIB

I s_| oad() returns an array of the following data structure as defined in <I sf/
| sf. h>:

struct hostLoad {

char host Nane[MAXHOSTNAMELEN ; Name of the host
int status[2]; The operational and load status of the host
float *li; Values for all load indices of this host

}:

The returned host Load array is ordered according to the order requirement in the
resource requirements. For details about the ordering of hosts, see the LSF User’s Guide.

The following example takes no option, and periodically displays the host name, host
status and 1-minute effective CPU run queue length for each Sun SPARC host in the
LSF cluster.

#i ncl ude <stdi o. h>
#incl ude <l sf/lsf.h>

nai n()

{ . .
int i;
struct host Load *hosts;
char *resreq = “type==sparc’;
int numhosts = 0;
int options = EFFECTIVE;
char *fromhost = NULL;
char field20] =

for (;) { * repeatedly display load *
hosts = Is_load(resreq, &numhosts, options, fromhost);

if (hosts == NULL) {
Is_perror(‘is_load”);
exit(-1);
}
printf(“%-15.15s %6.65%6.6s\n", “HOST_NAME", “status”, “rim");
for (i = 0; i < numhosts; i++) {
printf(%-15.15s “, hostsi.hostName);

if (LS_ISUNAVAIL(hostsli].status)) {
printf(‘%66s\n”, “unavail’);

30

else if (LS ISBUSY(hosts[i].status))
printf(%66.6s”, “busy”);
else if (LS_ISLOCKED(hosts]i].status))
printf(“%66.6s”, “locked”);

else
printf(‘%66.6s", “ok’);

if (hostsfilifR1IM] >= INFINIT_LOAD)
printf(%66.6s\n", “-");
else {
sprintf(field + 1, “%5.1f", hosts[i.i[R1M]);
if (LS_ISBUSYON(hosts[i].status, R1M))
printf(*%66.6s\n”, field);
else
printf(%6.6s\n", field + 1);

sleep(60); f untl next minute *

}

The output of the above program is similar to the following:

%a. out

HOST _NAME status rim
hostB ok 0.0
hostC ok 12
hostA busy 0.6
hostD busy *4.3
hostF unavail

If the host status is busy because of r 1m then a ‘** is printed in front of the value of the
r Imload index.

In the above example, note that the returned data structure host Load never needs to
be freed by the program even if | s_| oad() is called repeatedly.

Each element of the | i array is a floating point number between 0.0 and

I NFI NI T_LOAD (defined in| sf. h). The index valueissetto | NFI NI T_LQAD by LSF
to indicate an invalid or unknown value for an index.

LSF Programmer’s Guide 31

2 Programming with LSLIB

Thel i array can be indexed using different ways. The constants defined in| sf . h (see
thel s_| oad(3) man page) can be used to index any built-in load indices as shown in
the above example. If external load indices are to be used, the order in which load
indices are returned will be the same as that of the resources returned by | s_i nfo().
The variables numJsr | ndx and num ndx in structure | s| nf o can be used to
determine which resources are load indices. See ‘Advanced Programming Topics’ on
page 83 for a discussion of more flexible ways to map load index names to values.

LSF defines a set of macros in | sf . h to test the st at us field. The most commonly
used macros include:

LS | SUNAVAI L(st at us)
The LIM on the host is unavailable.

LS | SBUSY(st at us)
Returns 1 if the host is busy.

LS | SBUSYON\(st at us, i ndex)
Returns 1 if the host is busy on the given index.

LS | SLOCKED(st at us)
Returns 1 if the host is locked.

LS | SOK(st at us)
Returns 1 if none of the above is true.

Getting Dynamic Shared Resource Information

Unlike host-based resources which are inherent properties contributing to the making
of each host, shared resources are shared among a set of hosts. The availability of a
shared resource is characterized by having multiple instances, with each instance
being shared among a set of hosts.

The LSLIB function that can be used to access share resource information is:

LS SHARED RESORCE INFO T
*| s_shar edr esour cei nf o(resour ces, nuntesources, hostname, options)

On success, this function returns an array containing a shared resource information
structure (LS_SHARED RESOURCE_| NFO_T) for each shared resource. On failure,

32

2

this function returns NULL and sets | ser r no to indicate the error. This function has
the following parameters:

char **resour ces; NULL terminated array of resource names
int *nunresources; Number of shared resources

int host Nang; Host name

int options; Options (Qurrently set to 0)

r esour ces isalist (NULL terminated array) of shared resource names whose resource
information is to be returned. Specify NULL to return resource information for all
shared resources defined in the cluster.

nunT esour ces is an integer specifying the number of resource information structures
(LS_SHARED RESOURCE | NFO _T) to return. Specify 0 to return resource information
for all shared resources in the cluster. On success, nunt esour ces is assigned the
number of LS SHARED RESOURCE | NFO T structures returned.

host Nare is the integer name of a host. Specifying hostName indicates that only the
shared resource information for the named host is to be returned. Specify NULL to

return resource information for all shared resources defined in the cluster.

| s_shar edr esour cei nf o returns an array of the following data structure as
defined in <l sf/ I sf. h>:

typedef struct |sSharedResourcel nfo {

char *resour ceName; Resource name
int nl nst ances; Number of instances
LS SHARED RESOURCE | NST_T *i nst ances; pointer to the next instance

} LS SHARED RESORCE INFOT;

For each shared resource, LS SHARED RESOURCE | NFO_T encapsulates an array of
instances in the i nst ances field. Each instance is represented by the data type
LS SHARED RESOURCE_I NST_T defined in<I sf/ | sf. h>:

typedef struct |sSharedResourcel nstance {

char *val ue; Value associated with the instance
int nhHosts; Number of hosts sharing the instance
char **hostList; Hosts associated with the instance

} LS SHARED RESCURCE | NST_T:

Theval ue field ofthe LS SHARED RESOURCE | NST_T structure contains the ASCII
representation of the actual value of the resource. The interpretation of the value

LSF Programmer’s Guide 33

2 Programming with LSLIB

requires the knowledge of the resource (Boolean, Numeric or String), which can be
obtained from the r esl t emstructure accessible through the | sLoad structure

returned by | s_| oad() . See ‘Getting General Cluster Configuration Information’ on
page 19 for details.

The following example shows how to use | s_shar edr esour cei nf o() to collect
dynamic shared resource information in an LSF cluster. This example displays
information from all the dynamic shared resources in the cluster. For each resource, the
resource name, instance number, value and locations are displayed.

#i ncl ude <stdi o. h>

#incl ude <l sf/lsf.h>

static struct resltem* getResourceDef (char *);
static struct Isinfo * IsInfo;

voi d

nai n()

{
struct | sSharedResour cel nfo *reslLocl nf o;
int nunRes = 0O;
int i, j, k;

Isinfo = Is_info();

if (Islnfo == NULL) {
I's_perror("ls_info");
exit(-10);

}

resLocl nfo = I s_sharedresourcei nfo (NULL, &wunRes, NULL, 0);

if (resLoclnfo = NULL) {
I's_perror("ls_sharedresourcei nfo");
exit(-1);

}

printf("%11.11s 98.8s 9. 6s %4. 14s\n",
"NAME', "INSTANCE', "VALLE', "LCOCATIONS');

for (k = 0; k < nunRes; k++) {
struct resltem*resDef;
resDef = get Resour ceDef (resLocl nf o[K] . r esour ceNane) ;
if (! (resbDef->flags & RESF_DYNAM Q))

34

conti nue;

printf("%11.11s", resLoclnfo[k].resourceNane);
for (i =0; i <resLoclnfo[k].nlnstances; i++) {
struct | sShar edResour cel nst ance *i nst ance;

if (i ==0)

printf(" 98. 1d", i+1);
el se

printf(" 949.1d", i+1l);

i nstance = & eslLocl nfo[k].instances[i];
printf(" 9.6s", instance->val ue);

for (j =0; j <instance->nHosts; |++)
if (j =0
printf(" %4.14s\n", instance->hostList[j]);
el se
printf(" %1. 41s\n", instance->hostList[j]);

} 1* for */
Y /* for */
Y/ main */

static struct resltem*
get Resour ceDef (char *r esour ceNane)

{

int i;

for (i =0; i <lIslnfo->nRes; i++) {
if (strcnp(resourceNane, |slnfo->resTable[i].name) == 0)
return & slnfo->resTabl e[i];

}
/* Fail to find the matching resource */
fprintf(stderr, "Cannot find resource definition for <%>\n",

r esour ceNane) ;

exit (-1);

LSF Programmer’s Guide 35

2 Programming with LSLIB

The output of the above program is similar to the following:

% a. out
NAME | NSTANCE VALUE LQCATI ONS
dynam c1 1 2 host A
host C
host D
2 4 host B
host E
dynam c2 1 3 host A
host E

Note that the resource dynani c1 has two instances, one contains two resource units
shared by host A host Cand host Dand the other contains four resource units shared
by host B and host E. The dynamic2 resource has only one instance with three
resource units shared by host Aand host E.

Making a Placement Decision

If you are writing an application that needs to run tasks on the best available hosts, you
need to make placement decision as to on which host each task should run.

Placement decision takes two factors into consideration. The first factor is the resource
requirements of the task. Every task has a certain set of resource requirements. These
may be static, such as a particular hardware architecture or operating system, or
dynamic, such as a certain amount of swap space for virtual memory.

LSLIB provides services for placement advice. All you have to do is to call the
appropriate LSLIB function with appropriate resource requirements.

A placement advice can be obtained by calling either | s_| oad() function or

I s_pl acereq() function.l s_I| oad() returnsaplacement advice together with load
index values.| s_pl acer eq() returnsonly the qualified host names. The result list of
hosts are ordered by preference, with the first being the best. | s_pl acereq() is
useful when a simple placement decision would suffice.| s_| oad() can be used if the
placement advice from LSF must be adjusted by your additional criteria. The LSF
utilities | srun, | smake, | sl ogi n,and | stcshallusel s_pl acereq() for
placement decision, whereas Isbatch uses | s_| oad() to get an ordered list of

36

2

qualified hosts, and then makes placement decisions by considering Isbatch-specific
policies.

In order to make optimal placement decisions, it is important that your resource
requirements best describe the resource needs of the application. For example, if your
task is memory intensive, then your resource requirement string should have ‘mem’ in
the order segment, ‘f ddi order[memrini’.

The LSLIB function, | s_pl acer eq() , takes the form of
char **|s_placereq(resreq, num options, fronhost)

On success, this function returns an array of host names that best meet the resource
requirements. Hosts may be duplicated for hosts that have sufficient resources to
accept multiple tasks (for example, multiprocessors).

On failure, this function returns NULL and sets | ser r no to indicate the error.

The parameters for | s_pl acer eq() are very similar to those of the | s_| oad()
function described in the previous section.

LSLIB will append default resource requirement to resreq according to the rules
described in ‘Handling Default Resource Requirements’ on page 26.

Preference is given to f r omhost over remote hosts that do not have significantly
lighter load or greater resources. This preference avoids unnecessary task transfer and
reduces overhead. If f r omhost is NULL, then the local host is assumed.

The example program below takes a resource requirement string as an argument and
displays the host in the LSF cluster that best satisfies the resource requirement.

#i ncl ude <stdio. h>
#incl ude <l sf/lsf. h>

nmai n(argc, argv)
int argc;
char *argv[];

char *resreq = argv[1];

char **best;
int num= 1;

LSF Programmer’s Guide 37

2 Programming with LSLIB

int options = 0O;
char *fronhost = NULL;

if (argc '=2) {
fprintf(stderr, “Usage: %s resreg\n”, argvO]);
exit(-2);

}

best = Is_placereq(resreq, &um, options, fromhost);
if (best == NULL) {

Is_perror(‘ls_placereq()”);

exit(-1);

}
printf(‘The best host is <%s>\n", best[0]);

exit(0);
}

The above program will produce output similar to the following:

% a.out “type==local order[rlm:Is]’
The best host is <hostD>

LSLIB also provides a variant of | s_pl acereq() .l s_pl aceof host s() lets you
provide a list of candidate hosts. See the | s_pol i cy(3) man page for details.

Getting Task Resource Requirements

Host selection relies on resource requirements. To avoid the need to specify resource
requirements each time you execute a task, LSF maintains a list of task names together
with their default resource requirements for each user. This information is kept in three
task list files: the system-wide defaults, the per-cluster defaults, and the per-user
defaults.

A user can put a task name together with its resource requirements into his/her remote
task list by running the | srt asks command. The |l srt asks command can be used
to add, delete, modify, or display a task entry in the task list. For more information on
remote task list and an explanation of resource requirement strings, see the LSF User’s
Guide.

38

LSLIB provides a function to get the resource requirements associated with a task
name. With this function, LSF applications or utilities can automatically retrieve the
resource requirements of a given task if the user does not explicitly specify it. For
example, the LSF utility | sr un tries to find the resource requirements of the user-
typed command automatically if ‘- R option is not specified by the user on the
command line.

The LSLIB function call | s_resreq() obtains resource requirements of a given task.
The syntax of this function is:

char *|s_resreq(tasknarne)
If t askname does not appear in the remote task list, this function returns NULL.

Typically the resource requirements of a task are then used for host selection purpose.
The following program takes the input argument as a task name, get the associated
resource requirements from the remote task list, and then supply the resource
requirementstoal s_pl acer eq() call to get the best host for running this task.

#i ncl ude <stdio. h>
#incl ude <l sf/lsf.h>

nmai n(argc, argv)
int argc;
char *argv[];

char *tasknane = argv[1];
char *resreq;
char **best;

if (argc '=2) {
fprintf(stderr, “Usage: %s taskname\n”, argv{O]);
exit(-1);

}

resreq = Is_resreq(taskname);
if (resreq)
printf(“Resource requirement for %s is \%s\’\n", taskname, resreq);

else
printf(“Resource requirement for %s is NULL\N", taksname);

LSF Programmer’s Guide 39

2 Programming with LSLIB

best = Is_placereqg(resreq, NULL, 0, NUL);
if (best == NULL) {
Is_perror(‘ls_placereq”;
exit(-1);
}
printf(‘Best host for %s is <%s>\n", taskname, best0]);

exit(0);
}

The above program will produce output similar to the following:

%a. out nyj ob
Resource requirement for myjob is “swp>50 order{cpu:mem]’
Best host for myjob is <hostD>

Using Remote Execution Services

Remote execution of interactive tasks in LSF is supported through the Remote
Execution Server (RES). The RES listens on a well-known port for service requests.
Applications initiate remote execution by making an LSLIB call.

Remote Execution Mechanisms

The following steps are typically involved during a remote execution:

= The application makes a remote execution request through LSLIB.

= The LSLIB establishes a connection with the RES on the remote host and passes the

client’s identity and current execution environment over to the RES.

= The LSLIB starts a Network 1/0 Server (NIOS) locally if one has not been started

already and waits for a call back from the RES.

< [fthe LSLIB remote execution function is called with the pseudo-terminal option,
the RES creates a pseudo-terminal for the remote task and calls back to the client’s
NIOS to establish terminal 1/0 channels. If a pseudo-terminal is not required, the

RES creates a socket pair instead.

40

2

The RES forks and executes the remote task with its st di n, st dout and st derr

associated with the pseudo-terminal or socket. The remote task runs, and the RES
forwards any output from the remote task back to the client’s NI1OS.

= The client’s NIOS forwards the output from the remote task to the client’s stdout
or stderr. The NI1OS also watches the user’s terminal and forwards any input to the
remote task through the RES. Signals received by the NI1OS also are forwarded to

the remote task.

Figure 5. Remote Execution Mechanisms

Local Host

Application

signals
status

signals

stdin
stdout
stderr

tty/& screen

connection,
task execution

stdin /stdout /stderr
signals & status

Remote Host

i

pty master.
pty slave

When the remote task finishes, the RES collects its status and resource usage and sends
them back to the client through its NIOS

LSF Programmer’s Guide

41

2 Programming with LSLIB

Note that all of the above transactions are triggered by an LSLIB remote execution
function call and take place transparently to the programmer. Figure 5 shows the
relationships between these entities.

The same NIOS is shared by all remote tasks running on different hosts started by the
same instance of LSLIB. The LSLIB contacts multiple RESes and they all call back to the
same NIOS. The sharing of the NIOS is restricted to within the same application.

Remotely executed tasks behave as if they were executing locally. The local execution
environment passed to the RES is re-established on the remote host, and the task’s
status and resource usage are passed back to the client. Terminal 1/0 is transparent, so
even applications such as vi that do complicated terminal manipulation run
transparently on remote hosts. UNIX signals are supported across machines, so that
remote tasks get signals as if they were running locally. Job control also is done
transparently. This level of transparency is maintained between heterogeneous hosts.

Initializing an Application for Remote Execution

Before executing a task remotely, an application must call the following LSLIB
function:

int Is_initrex(nunports, options)

On success, this function initializes the LSLIB for remote execution. If your application
is installed as a setuid program, this function returns the number of socket descriptors
bound to privileged ports. If your program is not installed as a setuid to root program,
this function returns nunpor t s on success.

On failure, this function returns -1 and sets the global variable | ser r no to indicate the
error.

Note
This function must be called before any other remote execution function (see
I s_rex(3))orany remote file operation function (seel s_rfs(3))in LSLIB can
be called.

I's_initrex() hasthe following parameters:

int nunports; The number of priviliged ports to create
int opti ons; either KEEPU Dor O

42

If your program is installed as a setuid to root program, nunpor t s file descriptors,
starting from FI RST_RES SOCK (defined in <I sf /| sf . h>), are bound to privileged
portsby | s _initrex().These sockets are used only for remote connections to RES.
If nunport s is 0, then the system will use the default value LSF_DEFAULT _SOCKS
defined in | sf. h.

By default, | s_i ni t rex() restores the effective user ID to real user ID if the program
is installed as a setuid to root program. If opt i ons is KEEPUI D (defined in | sf. h),

I s_initrex() preserves the current effective user ID. This option is useful if the
application needs to be a setuid to root program for some other purpose as well and
does not want to go back to real user ID immediately after | s_i ni trex().

CAUTION!
If KEEPUI Dflag is set in options, you must make sure that your application
restores back to the real user ID at a proper time of the program execution.

I s_initrex() function selects the security option according to the following rule: if
the application program invoking it has an effective uid of root, then privileged ports
are created; otherwise, no such port is created and, at remote task start-up time, RES
will use the authentication protocol defined by LSF_AUTH in the | sf. conf file.

Running a Task Remotely

The example program below runs a command on one of the best available hosts. It
makes use of the | s_r esreq() function described in ‘Getting Task Resource
Requirements’ on page 38, thel s_pl acer eq() function described in ‘Making a
Placement Decision’ on page 36,thel s_i ni t r ex() function described in ‘Initializing
an Application for Remote Execution’ on page 42, and the following LSLIB function;

int |s_rexecv(host, argv, options)

This function executes a program on the specified host. It does not return if successful.
It returns -1 on failure.

This function is basically a remote execvp. If a connection with the RES on host has not
been established, | s_r execv() sets one up. The remote execution environment is set

LSF Programmer’s Guide 43

2 Programming with LSLIB

up to be exactly the same as the local one and is cached by the remote RES server. This
LSLIB function has the following parameters:

char *host ; The execution host
char *argv[]; The command and its arguments
int options; See below

The opt i ons argument is constructed from the bitwise inclusive OR of zero or more
of the option flags defined in <l sf /| sf. h> with names starting with ‘REXF_" . The
most commonly used flag is:

REXF_USEPTY
Use a remote pseudo terminal as the stdin , stdout , and stderr of the
remote task. This option provides a higher degree of terminal 1/0
transparency. This is only necessary for executing interactive screen
applications such as vi . The use of a pseudo-terminal incurs more overhead
and should be used only if necessary.

LSLIB also provides an Is_rexecve(3) function that allows you to specify the
environment to be set up on the remote host.

The program follows:

#i ncl ude <stdi o. h>
#i ncl ude <l sf/lsf. h>

nmai n(argc, argv)
int argc;
char *argv[];

char *command = argv[1];
char *resreq;
char **best;
int num= 1,

if (argc <2) {
fprintf(stderr, “Usage: %s command [argument ..]J\n", argv[Q]);
exit(-1);

}

if (Is_inirex(1, 0) < 0) {
Is_perror(‘is_initrex”);

44

exit(-1);
}

resreq = | s_resreq(comand);

best = Is_placereq(resreq, &um 0, NULL);
if (host == NULL) {

Is_perror(‘ls_placereq()”);

exit(-1);
}

printf(‘<<Execute %s on %s>>\n", command, best[0]);
Is_rexecv(best[0], argv + 1, Q);
f* should never get here *
Is_perror(‘ls_rexecv()’);
exit(-1);
}

The output of the above program would be something like:

%a. out myj ob
<<Execute myjob on hostD>>
(output from myjob goes here ...)

Note
Any application that uses LSF’s remote execution service must be installed for proper
authentication. See ‘Authentication’ on page 17.

The LSF utility | srun isimplemented usingthel s_r execv() function. After remote
task is initiated, | srun callsthel s_rexecv() function, which then executes NIOS to
handle all input/output to and from the remote task and exits with the same status
when remote task exits.

See ‘Advanced Programming Topics’ on page 83 for an alternative way to start remote
tasks.

LSF Programmer’s Guide 45

3 Programming with LSBLIB

This chapter shows how to use LSBLIB to access the services provided by LSF Batch
and LSF JobScheduler. Since LSF Batch and LSF JobScheduler are built on top of LSF
Base, LSBLIB relies on services provided by LSLIB. Thus if you use LSBLIB functions,
you must link your program with both LSLIB and LSBLIB.

LSF Batch and LSF JobScheduler services are mostly provided by nbat chd, except
services for processing event and job log files which do not involve any daemons.
LSBLIB is shared by both LSF Batch and LSF JobScheduler. The functions described
for LSF Batch in this chapter also apply to LSF JobScheduler, unless explicitly
indicated otherwise.

Initializing LSF Batch Applications

Before accessing any of the services provided by the LSF Batch and LSF JobScheduler,
an application must initialize LSBLIB. It does this by calling the following function:

int |sb_init(appnane);

On success, it returns 0; otherwise, it returns -1 and sets | sber r no to indicate the
error.

The parameter appnane is used only if you want to log detailed messages about the
transactions inside LSLIB for debugging purpose. The messages will be logged only if
LSB CMD LOG MASK is defined as LOG_DEBUGL.

The messages will be logged in file LSF_LOGDI R/ appnane. If appname is NULL, the log
file is LSF_LOGDI R/ bend.

Note
This function must be called before any other function in LSBLIB can be called.

LSF Programmer’s Guide 47

3 Programming with LSBLIB

Getting Information about LSF Batch Queues

LSF Batch queues hold the jobs in the LSF Batch and set scheduling policies and limits
on resource usage.

LSBLIB provides a function to get information about the queues in the LSF Batch. This
includes queue name, parameters, statistics, status, resource limits, scheduling policies
and parameters, and users and hosts associated with the queue.

The example program in this section uses the following LSBLIB function to get the
queue information:

struct queuel nf oEnt *1 sb_queuei nf o(queues, nuntueues, host nane, user nane, opt i ons)

On success, this function returns an array containing a queuel nf oEnt structure (see
below) for each queue of interest and sets * numQueues to the size of the array. On
failure, it returns NULL and sets | sber r no to indicate the error. It has the following
parameters:

char **queues; An array containing names of queues of interest
int * nunQueues; The number of names in queues

char *host nane; Only queues using hostname are of interest
char *usernane; Only queues enabled for user are of interest

int opti ons; Reserved for future use; supply 0

To get information on all queues, set * numQueues to 0; * numQueues will be updated
to the actual number of queues returned on a successful return.

If *numQueues is 1 and queue is NULL, information on the system default queue is
returned.

| f host nane is not NULL, then all queues using host host namne as a batch server host
will be returned. If user nane is not NULL, then all queues allowing user user namne
to submit jobs to will be returned.

The queuel nf oEnt structure is defined in | sbat ch. h as

struct queuel nf oEnt {
char *queue; Name of the queue
char *description; Description of the queue

48

i nt
short
char
char
i nt
fl oat
fl oat
int
i nt
char
i nt
char
int
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
char
char
char
char
i nt
char
char
char
char
i nt
char
int
int
char
char
char
char
char
char
char
char

priority;

ni ce;

*user Li st ;
*host Li st ;

nl dx;

*| oadSched;
*| cadSt op;
userJobLi mt;
procJobLint;
*Wi ndows;

Priority of the queue

Nice value at which jobs in the queue will be run

Users allowed to submit jobs to the queue

Hosts to which jobs in the queue may be dispatched

Size of the | cadSched and | oadSt op arrays

Load thresholds that control scheduling of jobs from the queue
Load thresholds that control suspension of jobs from the queue
Number of unfinished jobs a user can dispatch from the queue
Number of unfinished jobs the queue can dispatch to a processor
Queue run window

rLimts[LSF RAIMNIMTS; The per-process resource limits for jobs

*host Spec;
gAttrib;

gt at us;
naxJobs;
nundobs;
nunPEND,
nuniRUN
nun8SUSP,
nunuUsUSP;

mg;

schedDel ay;
accept I ntvl ;
*W ndowsD;
*ngsQueues;
*user Shar es;
*def aul t Host Spec;
procLimt;
*adm ns;

*pr eQnd;

*post Ond;

*r equeueEVal ues;
host JobLi m t;
*resReq;
NunRESERVE,

sl ot Hol dTi ne;
*sndJobsTo;

*r cvJobsFrom
*r esuneCond,;
*st opCond;
*jobStarter;
*suspendAct Ond;
*r esunmeAct Od;
*t er m nat eAct On;

LSF Programmer’s Guide

Obsolete. Use def aul t Host Spec instead
Attributes of the queue
Status of the queue
Job slot limit of the queue.
Total number of job slots required by all jobs
Number of job slots needed by pending jobs
Number of jobs slots used by running jobs
Number of job slots used by system suspended jobs
Number of jobs slots used by user suspended jobs
Queue migration threshold in minutes
Schedule delay for new jobs
Minimum interval between two jobs dispatched to the same host
Queue dispatch window
A blank-separated list of NQS queue specifiers
A blank-separated list of user shares

Value of DEFAULT_HOST_SPECfor the queue in | sh. queues
Maximum number of job slots a job can take
Queue level administrators
Queue level pre-exec command
Queue’s post-exec command
Queue’s requeue exit status
Per host job slot limit
Queue level resource requirement
Reserved job slots for pending jobs
Time period for reserving job slots
Remote queues to forward jobs to
Remote queues which can forward to me
Conditions to resume jobs
Conditions to suspend jobs
Queue level job starter
Action commands for SUSPEND
Action commands for RESUME

Action commands for TERMINATE

49

3 Programming with LSBLIB

int sighap[LSB_SI G NV ; Configurable signal mapping
char *preenption; Preemption policy
i nt naxRschedTi ne; Time period for remote cluster to schedule job

b

The variable nl dx is the number of load threshold values for job scheduling. This is in
fact the total number of load indices as returned by LIM. The parameters sndJobsTo,
r cvJobsFr om and maxRschedTi e are only used with LSF MultiCluster.

For a complete description of the fields in the queuel nf oEnt structure, see the
| sb_queuei nf o(3) man page.

The program below takes a queue name as the firstargument and displays information
about the named queue.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/ | sbat ch. h>

i nt

main (argc, argv)
int argc;
char *argv[];

struct queuel nf oEnt *ql nf o;
int nunQueues = 1;

char *queue=argv[1];

int i;

if (argc !'=2) {
printf(“Usage: %s queue_name\n”, argvi0));
exit(-1);

}

if (Isb_initargv[0]) < 0) {
Isb_perror(‘isb_init()");
exit(-1);

}

ginfo = Isb_queueinfo(&queue, &numQueues, NULL, NULL, 0);
if (Qinfo == NULL) {

Isb_perror(‘isb_queueinfo()”);

exit(-1);

50

printf(‘information about %s queue\n”, queue);
printf(“Description: %s\n”, qinfo[0].description);
printf(“Priority: %od Nice: %d \n”,
glnfo[Q].priority, glnfo[0].nice);
printf(“Maximum number of job slots:”);
if (Qip>maxJobs < INFINIT_INT)
printf(“%65d\n“, ginfo[0].maxJohs);
else
printf(“%65s\n®, “unlimited”);

printf(“Job slot statistics: PEND(%d) RUN(%6d) SUSP(%6d) TOTAL(%d)\n",
gInfo[0].numPEND, gInfo[0].numRUN,
qInfo[0].numSSUSP + gInfo[0].numUSUSP, qInfo[0].numJobs);

exit(0);
}

The header file | sbat ch. h must be included with every application that uses LSBLIB
functions. Note that | sf . h does not have to be explicitly included in your program
because | sbat ch. h already has | sf. h included. The function| sb_perror () is
used in much the same way | s_perror () is used to print error messages regarding
function call failure. You could check | sber r no if you want to take different actions
for different errors.

In the above program, | NFI NI T_I NT is defined in| sf . h and is used to indicate that
there is no limit set for naxJobs. This applies to all LSF API function calls. LSF will
supply I NFI NI T_I NT automatically whenever the value for the variable is either
invalid (not available) or infinity. This value should be checked for all variables that
are optional. For example, if you were to display the | oadSched/| oadSt op values,
an | NFI NI T_I NT indicates that the threshold is not configured and is ignored.

Note
Like the returned data structures by LSLIB functions, the returned data structures
from an LSBLIB function is dynamically allocated inside LSBLIB and is automatically
freed next time the same function is called. You should not attempt to free the space
allocated by LSBLIB. If you need to keep this information across calls, make your own
copy of the data structure.

LSF Programmer’s Guide 51

3 Programming with LSBLIB

The above program will produce output similar to the following:

I nf ormati on about nornal queue:

Description: For normal |owpriority jobs

Priority: 25 N ce: 20

Maxi mum nunber of job slots : 40

Job slot statistics: PEND(5) RUN12) SUSP(1) TOTAL(18)

Getting Information about LSF Batch Hosts

LSF Batch server hosts execute the jobs in the LSF Batch system.

LSBLIB provides a function to get information about the server hosts in the LSF Batch
system. This includes both configured static information as well as dynamic
information. Examples of host information include host name, status, job limits and
statistics, dispatch windows, and scheduling parameters.

The example program in this section uses the following LSBLIB function:

struct hostlnfoEnt *Isb_hostinfo(hosts, nuntbsts)

This function gets information about LSF Batch server hosts. On success, it returns an
array of host | nf oEnt structures which hold the host information and sets
*nunHost s to the size of the array. On failure, it returns NULL and sets | sber r no to

indicate the error. It has the following parameters:

char **hosts; An array of names of hosts of interest
int *nuntbst s; The number of names in hosts

To get information on all hosts, set * nunHost s to 0; * nunmHost s will be set to the
actual number of host | nf oEnt structures when this call returns successfully.

If *nunHost s is 1 and host s is NULL, information on the local host is returned.
The host | nf oEnt structure is defined in | sbat ch. h as

struct host | nfoEnt {
char *host; Name of the host
i nt hSt at us; Status of host. (see below)

52

i nt busySched,; Reason host will not schedule jobs

int busy St op; Reason host has suspended jobs

float cpuFactor; Host CPU factor, as returned by LIM

int nl dx; Size of the | cadSched and | cadSt op arrays, as returned from LIM
float *|oad; Load LSF Batch used for scheduling batch jobs

float *| oadSched; Load thresholds that control scheduling of jobs on host
float *| oadSt op; Load thresholds that control suspension of jobs on host
char *w ndows; Host dispatch window

int userJobLimt; Maximum number of jobs a user can run on host

i nt naxJobs; Maximum number of jobs that host can process concurrently
i nt nundobs; Number of jobs running or suspended on host

i nt numRUN Number of jobs running on host

i nt nunsSUSP, Number of jobs suspended by sbat chd on host

int nunUSUSP, Number of jobs suspended by a user on host

i nt mg; Migration threshold for jobs on host

int attr; Host attributes

#define H ATTR CHKPNTABLE Ox1
#define H ATTR CHKPNT_QCPY Ox2

fl oat *real Load; The load mbatchd obtained from LIM
i nt NUNRESERVE; Num of slots reserved for pending jobs
int chkS g; This variable is obsolete

b

Note the differences between host information returned by LSLIB function

| s_get hosti nf o() and host information returned by the LSBLIB function

I sb_hosti nf o() . The former returns general information about the hosts whereas
the latter returns LSF Batch specific information about hosts.

For a complete description of the fields in the host | nf oEnt structure, see the
I sb_hosti nf o(3) man page.

The example program below takes a host name as an argument and displays various
information about the named host. It is a simplified version of the LSF Batch bhost s
command.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/ | sbat ch. h>

main (argc, argv)
int argc;
char *argv[];

struct host | nf oEnt *hl nf o;

LSF Programmer’s Guide 53

3 Programming with LSBLIB

int nuntbsts = 1;
char *hostnane = argv[1];
int i;

if (argc !'=2) {
printf(“Usage: %s hosthame\n”, argvi0]);
exit(-1);

}

if (Isb_init@rgv[0]) < 0) {
Isb_perror(‘sh_init");
exit(-1);

}

hinfo = Isb_hostinfo(&hostname, &numHosts);

if (hinfo == NULL) {
Isb_perror(‘isb_hostinfo);
exit (-1);

}

prinfCHOST NAME ~ STATUS JUU NJOBS RUN SSUSP USUSPW);
printt (%6-18.18s”, hinfo->host);

if (hinfo->hStatus & HOST_STAT_UNLICENSED) {
printf(%-9s\n”, “unlicensed”);
continue; f* don't print other info */
} else if (hinfo->hStatus & HOST_STAT_UNAVAIL)
printf(* %-9s”, “unavail’);
else if (hinfo->hStatus & HOST_STAT_UNREACH)
printf(* %-9s”, “unreach”;
else if (hinfo->hStatus & (HOST_STAT_BUSY | HOST_STAT_WIND
| HOST_STAT_DISABLED | HOST_STAT_LOCKED
| HOST_STAT_FULL | HOST_STAT_NO_LIM))
printf(* %-9s”, “closed”);
else
printf(* %-9s”, “ok”);
if (hinfo->userJobLimit < INFINIT_INT)
printf(“%4d”, hinfo->userJobLimit);
else
printf(“%64s”, “");

printf(%7d %4d %4d %Adw,

54

hl nf o- >nundobs, hl nf o- >nuMRUN hl nf 0- >nunB8SUSP, hi nf 0- >nunUSUSP) ;
exit(0);
}

hSt at us is the status of the host. It is the bitwise inclusive ORof some of the following
constants defined in | sbat ch. h:

HOST_STAT_BUSY
The host load is greater than a scheduling threshold. In this status, no new
batch job will be scheduled to run on this host.

HOST_STAT_W ND
The host dispatch window is closed. In this status, no new batch job will be
accepted.

HOST_STAT_DI SABLED
The host has been disabled by the LSF administrator and will not accept jobs.
In this status, no new batch job will be scheduled to run on this host.

HOST_STAT_LOCKED
The host is locked by an exclusive job. In this status, no new batch job will be
scheduled to run on this host.

HOST_STAT_FULL
The host has reached its job limit. In this status, no new batch job will be
scheduled to run on this host.

HOST_STAT_UNREACH
The sbat chd on this host is unreachable.

HOST_STAT_UNAVAI L
The LIM and sbat chd on this host are unreachable.

HOST_STAT_UNLI CENSED
The host does not have an LSF license.

HOST_STAT_NO LI M
The host is running an sbat chd but not a LIM.

LSF Programmer’s Guide 55

3 Programming with LSBLIB

If none of the above holds, hSt at us is set to HOST_STAT_OK to indicate that the host
is ready to accept and run jobs.

The constant INFI NI T_| NT defined in | sf. h is used to indicate that there is no limit
set for user JobLim t.

The example output from the above program follows:
%a. out hostB

HOST_NAME STATUS JL/U NJGBS RUIN SSUSP USUsP
host B ok - 2 1 1 0

Job Submission and Modification

Job submission and modification are most common operations in the LSF Batch
system. A user can submit jobs to the system and then modify them if the job has not
been started.

LSBLIB provides one function for job submission and one function for job
modification.

int |sb_subnmt(jobSubReq, jobSubReply)
int |sb_nodify(jobSubReq, jobSubReply, jobld)

On success, these calls return the job ID, otherwise -1 is returned with | sberr no set
to indicate the error. These two functions are similar except that | sb_rnodi fy()
modifies the parameters of an already submitted job.

Both of these functions use the same data structure:

struct submt *j obSubReq; Job specifications
struct submtReply *jobSubReply; Results of job submission
int jobld, Id of the job to modify (I sb_nodi fy() only)

The subni t structure is defined in| sbat ch. h as

struct submt {
i nt opti ons; Indicates which optional fields are present
i nt opti ons2; Indicates which addi ti onal fields are present

56

char *j obNane; Job name (optional)
char *queue; Submit the job to this queue (optional)
int nunAskedhost s; Size of askedHost s (optional)
char **askedHosts; An array of names of candidate hosts (optional)
char *resReq; Resource requirements of the job (optional)
i nt rlimts[LSF RAIMNLIMTY];
Limits on system resource use by all of the job’s processes

char *host Spec; Host model used for scaling rl i m t s (optional)

int nunPr ocessors; Initial number of processors needed by the job

char *dependCond; Job dependency condition (optional)

tine_t begi nTi ne; Dispatch the job on or after begi nTi ne

tinme t terntine; Job termination deadline

i nt si gval ue; This variable is obsolete)

char *inFileg Path name of the job’s standard input file (optional)
char *outFile; Path name of the job’s standard output file (optional)
char *errFile; Path name of the job’s standard error output file (optional)
char *command; Command line of the job

tinme_t chkpntPeriod; Jobis checkpointable with this period (optional)

char *chkpntDr; Directory for this job’s chk directory (optional)

i nt nxf; Sze of xf (optional)

struct xFile *xf; An array of file transfer specifications (optional)

char *preExecO; Job’s pre-execution command (optional)

char *nail Wser; User E-mail address to which the job’s output are mailed (optional)
i nt del pti ons; Bits to be removed from options (I sb_nodi fy() only)
char *project Nare; Name of the job’s project (optional)

i nt naxNunPr ocessors; Requested maximum num of job slots for the job
char *| ogi nShel | ; Login shell to be used to re-initialize environment
char *exceptlList; Lists the exception handlers

b

For a complete description of the fields in the submi t structure, see the
| sb_subnit (3) man page.

The submi t Repl y structure is defined in | sbat ch. h as

struct submtReply {

char *queue; The queue name the job was submitted to

i nt badJobl d; dependCond contains badJobl d but there is no such job
char *badJobNane; dependCond contains badJobNane but there is no such job
i nt badReql ndx; Index of a host or resource limit that caused an error

b

LSF Programmer’s Guide 57

3 Programming with LSBLIB

The last three variables in the structure submi t Repl y are only used when the
I sb_subnit() orlsb_nodify() function calls fail.

For a complete description of the fields in the submi t Repl y structure, see the
| sb_subnit(3) man page.

To submit a new job, all you have to do is to fill out this data structure and then call
| sb_subnit().Thedel Opti ons variable is ignored by LSF Batch system for
| sb_submit () function call.

The example job submission program below takes the job command line as an
argument and submits the job to the LSF Batch system. For simplicity, it is assumed
that the job command does not have arguments.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/| sbat ch. h>

nmai n(argc, argv)
int argc;
char **argv;

struct subnit req;
struct submtReply reply;
int jobld;

int i;

if (argc !'=2) {
fprintf(stderr, “Usage: %s command\n”, argvi0]);
exit(-1);

}

if (Isb_init@rgv[0]) < 0) {
Isb_perror(‘isb_init’);
exit(-1);

}

reg.options = 0;
reg.maxNumProcessors = 1;
req.options2 = 0;
regresReq = NULL;

for (= 0; i < LSF_RLIM_NLIMITS; i++)
req.rLimitsfij = DEFAULT_RLIMIT;

58

reg. host Spec = NULL;

req. nunProcessors = 1;
req. maxNunProcessors = 1;
reg. begi nTine = 0;
reg.ternTime = 0;

reg. coomand = argv[1];
reg.nxf = 0;

reg. del otions = 0O;

jobld = 1sb_submt(&eq, &eply);

if (jobld <0) {
switch (Isberrno) {
case LSBE QELE USE
case LSBE QEUE A.CGSED
| sb_perror(reply. queue);

exit(-1);
defaul t:
| sb_perror (NULL) ;
exit(-1);
}
}
exit(0);

}

The opt i ons field of the submi t structure is the bitwise inclusive OR of some of the
SUB_* flags defined in | sbat ch. h. These flags serve two purposes. Some flags
indicate which of the optional fields of the subni t structure are present. Those that
are not present have default values. Other flags indicate submission options. For a
description of these flags, see | sb_submi t (3) .

Since opt i ons indicate which of the optional fields are meaningful, the programmer
does not need to initialize the fields that are not chosen by options. All parameters that
are not optional must be initialized properly.

If ther esReq field of the subm t structure is NULL, LSBLIB will try to obtain resource
requirements for conmand from the remote task list (see ‘Getting Task Resource
Requirements’ on page 38). If the task does not appear in the remote task list, then
NULL is passed to the LSF Batch system. nbat chd will then use the default resource
requirements with option DFT_FROMTYPE bit set when making a LSLIB call for host

LSF Programmer’s Guide 59

3 Programming with LSBLIB

selection from LIM. See ‘Handling Default Resource Requirements’ on page 26 for
more information about default resource requirements.

The constant DEFAULT_RLIMIT defined in Isf.h indicates that there is no limit on a
resource.

The constants used to index ther | i m t's array of the subni t structure is defined in
| sf. h, and the resource limits currently supported by LSF Batch are listed below.

Table 3. Resource Limits Supported by LSF Batch

Resource Limit

Indexinrlimts Array

CPU time limit

LSF_RLIM T_CPU

File size limit

LSF_RLIM T_FSI ZE

Data size limit

LSF_RLI M T_DATA

Stack size limit

LSF_RLI M T_STACK

Core file size limit

LSF_RLIM T_CORE

Resident memory size limit

LSF_RLIM T_RSS

Number of open files limit

LSF_RLIM T_OPEN_MAX

Virtual memory limit

LSF_RLIM T_SWAP

Wall-clock time run limit

LSF_RLIM T_RUN

Maximum num of processes a job can fork

LSF_RLI M T_PROCESS

The host Spec field of the submi t structure specifies the host model to use for scaling

rlimts[LSF RLIMT_CPU] andrlimts[LSF RLIMT_RUN] (See
| sb_queuei nf o(3)). If host Spec is NULL, the local host’s model is assumed.

If the begi nTi e field of the submi t structure is O, start the job as soon as possible.

If thet er nili e field of the submi t structure is 0, allow the job to run until it reaches
a resource limit.

The above example checks the value of | sber rno when | sb_subm t () fails.

Different actions can be taken depending on the type of the error. All possible error
numbers are defined in | sbat ch. h. For example, error number LSBE_QUEUE_USE

60

indicates that the user is not authorized to use the queue. The error number
LSBE QUEUE _CLOSED indicates that the queue is closed.

Since a queue name was not specified for the job, the job will be submitted to the
default queue. The queue field of the submi t Repl y structure contains the name of
the queue to which the job was submitted.

The above program will produce output similar to the following:

Job <5602> is submtted to default queue <default>.

The output from the job will be mailed to the user because it did not specify a file name
for the out Fi | e parameter in the submni t structure.

If you are familiar with the bsub command, it may help to know how the fields in the
submi t structure realte to the bsub command options. This is provided in the
following table.

Table 4. subni t fields and bsub options

bsub Option subm t Field options

-J job_nane_spec j obNane SUB_JOB_NAME

-q queue_nane queue SUB_QUEUE

-m host _nane[+[pref _l evel]] askedHost s SUB_HOST

-n mn_proc[, max_proc] nunProcessors,
maxNunPr ocessors

-Rres_req resReq SUB_RES_REQ

-c cpu_limt[/host_spec] rlimts[LSF_RLIMT_CPU] / SUB_HOST_SPEC (if
host Spec ** host _spec is specified)

-Wrun_limt[/host_spec] rlimts[LSF_RLIMT_RUN] / SUB_HOST_SPEC (if
host Spec** host _spec is specified)

-F file_limt rlimts[LSF_RLIMT_FSI ZE] **

-Mnemlinmt rlimts[LSF_RLIM T_RSS] **

-Ddata_limt rlimts[LSF_RLI M T_DATA] **

-S stack _limt rlimts[LSF_RLIM T_STACK**

-Ccore_limt rlimts[LSF_RLIM T_CORE] **

LSF Programmer’s Guide 61

3 Programming with LSBLIB

Table 4. subni t fields and bsub options

bsub Option

subm t Field

options

-k "chkpnt _dir
[chkpnt _period]"

chkpnt Di r, chkpntPeri od

SUB_CHKPNT_DI R,
SUB_CHKPNT_DI R (i f
chkpntPeriod is

speci fi ed)
-w depend_cond dependCond SUB_DEPEND_COND
-b begin_tinme begi nTi ne
-t termtine Ter nli e
-i in_file inFile SUB I N FILE
-o out_file outFile SUB_QUT FI LE
-eerr_file errFile SUB _ERR FI LE
-u nail _user mai | User SUB_MAI L_USER
-f "Ifileop [rfile]" xf
-E "pre_exec_command pr eExecCnd SUB_PRE_EXEC
[argunent ...]"
-L login_shell | ogi nShel | SUB_LOG N_SHELL

-P project_nane

pr oj ect Nanme

SUB_PROJECT_NAME

- G user_group user Group SUB_USER_GROUP
-H SUB2_HOLD*

- X SUB_EXCLUSI VE

-r SUB_RERUNNABLE
-N SUB_NOTI FY_END
-B SUB_NOTI FY_BEG N
-1 SUB_| NTERACTI VE
-lp SUB_PTY

-Is SUB_PTY_SHELL

-K SUB2_BSUB_BLOCK*

62

Table 4. subni t fields and bsub options

bsub Option submi t Field options
- X except Li st SUB_EXCEPT
"exception_cond([parans])::
action"
-T time_event ti meEvent SUB_TI ME_EVENT

* indicates a bitwise OR mask for options2.
** indicates -1 means undefined

Even if not all options are used, all optional string fields must be initialized to the
empty string. For a complete description of the fields in the subm t structure, see the
| sb_subm t (3) manual page.

To modify an already submitted job, you can fill out a new submit structure to override
existing parameters, and use del Opt i ons to remove option bits that were previously
specified for the job. Essentially, modifying a submitted job is like re-submitting the
job. So the same program as above can be used to modify an existing job with minor
changes. One additional parameter that must be specified for job modification is the
job Id. The parameter del Qpt i ons can also be set if you want to clear some option bits
that were set previously.

Note
All applications that call | sb_submi t () and | sb_nodi fy() are subject to
authentication constraints described in ‘Authentication’ on page 17.

Getting Information about Batch Jobs

LSBLIB provides functions to get status information about batch jobs. Since the
number of jobs in the LSF Batch system could be on the order of many thousands,
getting all this information in one message could potentially use a lot of memory space.
LSBLIB allows the application to open a stream connection and then read the job
records one by one. This way the memory space needed is always the size of one job
record.

LSF Programmer’s Guide 63

3 Programming with LSBLIB

LSF Batch Job ID

An LSF Batch job ID stored in a 32-bit integer and it consists of two parts: base ID and
array index. The base ID is stored in the lower 20 bits whereas the array index in the
top 12 bits which are only used when the underlying job is an array job.

31 20 19 0

Array Index base ID

LSBLIB provides the following C macros (defined in | sbat ch. h) for munipulating
job IDs:

LSB JCBI DO base_i d, array_i ndex) Yield a 32-bit LSF Batch job ID
LSB_ARRAY_| DX(j ob_i d) Yield array index part of the job ID
LSB_ARRAY_J(BI OO(j ob_i d) Yield the base ID part of the job ID

The function calls used to get job information are:

int | sb_openjobinfo(jobld, jobNarme, user, queue, host, options);
struct joblnfoEnt *I|sb_readj obi nfo(nore);

voi d | sb_cl osej obi nfo(voi d);

These functions are used to open a job information connection with nbat chd, read job
records, and then close the job information connection.

| sb_openj obi nf o() function takes the following arguments:

int jobld, Select job with the given job Id

char *jobMang; Select job(s) with the given job nhame

char *user; Select job(s) submitted by the named user or user group

char *queue; Select job(s) submitted to the named queue

char *host; Select job(s) that are dispatched to the named host

int opti ons; Selection flags constructed from the bits defined in | sbat ch. h

64

3

The opt i ons parameter contains additional job selection flags defined in | sbat ch. h.
These are:

ALL_JOB
Select jobs matching any status, including unfinished jobs and recently
finished jobs. LSF Batch remembers finished jobs within the CLEAN_PERI OD,
as defined in the | sb. par ans file.

CUR_JOB
Return jobs that have not finished yet.

DONE_JOB
Return jobs that have finished recently.

PEND_JOB
Return jobs that are in the pending status.

SUSP_JOB
Return jobs that are in the suspended status.

LAST _JOB
Return jobs that are submitted most recently.

JCRP_ARRAY_| NFO
Return job array information.

If opti ons is 0, then the default is CUR_JOB.

| sb_openj obi nf o() returns the total number of matching job records in the
connection. It returns -1 on failure and sets | sber r no to indicate the error.

| sb_readj obi nf o() takes one argument:
int *nor e; If not NULL, contains the remaining number of jobs unread
Either this parameter or the return value from the | sb_openj obi nf o() can be used

to keep track of the number of job records that can be returned from the connection.
This parameter is updated each time | sb_r eadj obi nf o() is called.

LSF Programmer’s Guide 65

3 Programming with LSBLIB

The j obl nf oEnt structure returned by | sb_r eadj obi nf o() is defined in
| sbat ch. h as:

struct jobl nfoEnt {

i nt j obl d; job ID

char *user; submission user

/* possible values for the status field */
#def i ne JGB_STAT_PEND 0x01 job is pending
#defi ne JCB STAT PSUSP 0x02 job is held
#defi ne JGB_STAT_RWN 0x04 job is running

#def i ne JGB_STAT_SSUSP 0x08 job is suspended by LSF Batch system
#def i ne JGB_STAT_USUSP 0x10 job is suspended by user

#define JCB_STAT EXIT 0x20 job exited

#def i ne JCB_STAT_DONE 0x40 job is completed successfully
int st at us;
i nt *reasonTb; pending or suspending reasons
int nuniReasons; length of reasonTb vector
i nt r easons; reserved for future use
i nt subr easons; reserved for future use
i nt j ObPFi d; process Id of the job
time t submtTime; time when the job is submitted
time_t reserveTing; time when job slots are reserved
tine_t startTing time when job is actually started
tine_t predictedStartTine; job’s predicted start time
tine_t endTine; time when the job finishes
tinme t |astBEvent; last time event
tinme_t nextEBEvent; next time event
i nt durati on; duration time (minutes)
f1 oat cpuTi ne; CPU time consumed by the job
int unask; file mode creation mask for the job
char *cwd; current working directory where job is submitted
char *subHoneDi r; submitting user's home directory
char *frontbst ; host from which the job is submitted
char **exHost s; host(s) on which the job executes
i nt nuniExHost s; number of execution hosts
f1 oat cpuFact or; CPU factor of the first execution host
i nt nl dx; number of load indices in the loadSched and

loadStop vector
float *| oadSched,; stop scheduling new jobs if this threshold
is exceeded

float *| oadSt op; stop jobs if this threshold is exceeded
struct submt subnit; job submission parameters
i nt exi t St at us; exit status
i nt execU d; user ID under which the job is running

66

char *execHone; home directory of the user denoted by execUid
char *execOnd; current working directory where job is running
char *execlser nang; user name corresponds to execUid

tine_t jRusagelpdateTi ne; last time job'’s resource usage is updated
struct j Rusage runRusage; last updated job’s resource usage

/* Possible values for the jType field */

#defi ne JGRP_NCDE _JCB 1 this structure stores a normal batch job
#defi ne JGRP_NDE_ GROP 2 this structure stores a job group
#defi ne JGRP_NCDE_ARRAY 3 this structure stores a job array
i nt j Type;
char *par ent G oup; for job group use
char *j Nane; job group name: if jType is JGRP_NODE_GROUP

job’'s name: otherwise

/* index into the counter array, only used for job array */
#defi ne JGRP_CONT_NICBS 0 total jobs in the array
#defi ne JGRP_CONT_PEND 1 number of pending jobs in the array
#defi ne JGP_CONT_NPSUSP 2 number of held jobs in the array
#defi ne JGERP_CONT_NRWN 3 number of running jobs in the array
#defi ne JGRP_QONT_NSSUSP 4 number of jobs suspended by the system in the array
#defi ne JEP_QONT_NUBSUSP 5 number of jobs suspended by the user in the array
#defi ne JGRP_QONT_NEXT 6 number of exited jobs in the array
#defi ne JGP_CONT_NDONE 7 number of successfully completed jobs

i nt count er [NUM JGRP_COUNTERS] ;
¥

Under LSF Batch, the j obl nf oEnt can store a job array as well as a non-array batch
job, depending on the value of j Type field, which can be either JGRP_NCODE_JOB or
JCRP_NODE_ARRAY.

I sb_cl osej obi nf o() should be called after receiving all job records in the
connection.

Below is an example of a simplified bj obs command. This program displays all
pending jobs belonging to all users.

#i ncl ude <stdio. h>
#i ncl ude <l sf/| sbat ch. h>

nai n()
{
int options = PEND JCB;
char *user = "all’; F match jobs for all users *

LSF Programmer’s Guide 67

3 Programming with LSBLIB

struct jobl nfoEnt *j ob;
int nore;

if (Isb_init(argv[0]) <0) {
Isb_perror(‘isb_init’);
exit(-1);

}

if (Isb_openjobinfo(0, NULL, user, NULL, NULL, options) < 0) {
Isb_perror(‘isb_openjobinfo”);
exit(-1);

}

printf“All pending jobs submitted by all users\n”);
for ;) {
job = Isb_readjohinfo(&more);
if job == NULL) {
Isb_perror(‘isb_readjobinfo”);
exit(-1);
}
F display the job */
printf(“%s:\nJob <%d> of user <%s>, submitted from host <%s>\n",
ctime(&job->submitTime), job->jobld, job->user, job->fromHost);

if (! more)
break;
}

Ish_closejobinfo();
exit(0);
}

If you want to print out the reasons why the job is still pending, you can use the
function| sb_pendr eason().Seel sb_pendr eason(3) for details.

68

The above program will produce output similar to the following:

Al pending jobs submtted by all users:

Mon Mar 1 10: 34: 04 EST 1996:

Job <123> of user <john> submtted fromhost <orange>
Mon Mar 1 11:12:11 EST 1996:

Job <126> of user <john> submtted fromhost <orange>
Mon Mar 1 14:11: 34 EST 1996:

Job <163> of user <ken>, submtted fromhost <apple>
Mon Mar 1 15: 00: 56 EST 1996:

Job <199> of user <tinp, submtted fromhost <pear>

The following program displays the job arrays of all users in the LSF Batch system and
displays the breakdown of jobs as far as job status is concerned. The program
demonstrates the use of LSBLIB API calls for collecting summary information of a job
array.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/ | sbat ch. h>

i nt
mai n(int argc, char **argv)
{
struct joblnfoEnt *job;
i nt nundobs;
int nore;

if (Isb_init(argv[0]) <0) {
Isb_perror("lsb_init");
exit(-1);

}

nundobs = | sh_openj obi nfo(0, NUL, "all", NULL, NULL, AL JCB JGRP_ARRAY INFO;
if (numlobs < 0) {

| sb_perror ("l sb_openj obi nfo");

exit(-1);
}

printf("JCBID ARRAY NAME OMER NJCBS PEND DONE RN EXI T SSUSP UBUSP PSLEP 1) ;

nore = 1,

for (;5) {

LSF Programmer’s Guide 69

3 Programming with LSBLIB

if (!nore)
br eak;

job = |sb_readj obi nf o(&ore);

printf("%5d 9%8.8s ", LSB ARRAY JOBI) j ob->j obl d), job->submt.jobNane);

printf("98.8s ", job->user);

printf(" 9d %d %d %4d %d %d 9%6d 9%d\n",
j ob->count er [JARP_CONT_NICBS],
j ob->count er [JGRP_COUNT_PENJ ,
j ob->count er [JGRP_COUNT_NDONE]
j ob->count er [JGRP_COUNT_NRWN ,
j ob->count er [JARP_COUNT_NEXI T],
j ob->count er [JGRP_COUNT_NSSUSF| ,
j ob->count er [JAGRP_COUNT_NUSUSF],
j ob->count er [JGRP_COUNT_NPSUSF]) ;
}

| sb_cl osej obi nfo();

exit(0);
}

The above program produces output similar to the following:

JOBI D ARRAY_NAME OMNER NJOBS PEND DONE RUN EXI T SSUSP USUSP PSUSP
4205 jai[1- 8] user A 8 0 0 0 0 0 0 8
4207 ja2[1-2] userB 2 0 0 0 0 0 0 2
5074 ja3[1-4] user A 4 0 3 1 0 0 0 0
5075 j a4[1- 10] userC 17 0 13 0 0 4 0 0
5076 jab[1-4] userD 4 0 1 0 3 0 0 0

Job Manipulation

After a job has been submitted, it can be manipulated by users in different ways. It can

be suspended, resumed, killed, or sent an arbitrary signal.
Note

All applications that manipulate jobs are subject to authentication provisions
described in ‘Authentication’ on page 17.

70

Sending a Signal To a Job

Users can send signals to submitted jobs. If the job has not been started, you can send
Kl LL, TERM | NT, and STOP signals. These will cause the job to be cancelled (KI LL,
TERM | NT) or suspended (STOP). If the job is already started, then any signals can be
sent to the job.

The LSBLIB call to send a signal to a job is:
int |sb_signaljob(jobld, sigvalue);
The j obl d and si gVal ue parameters are self-explanatory.

The following example takes a job ID as the argument and send a SI GSTOP signal to
the job.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/ | sbat ch. h>

nmai n(argc, argv)
int argc;
char *argv[];

{
if (argc !'=2) {
printf("Usage: %s jobld\n”, argvi0]);
exit(-1);
}
if (Isb_init@rgv[0]) < 0) {
Isb_perror(‘isb_init’);
exit(-1);
}
if (Isb_signaljob(atoi(argv{1]), SIGSTOP) <0) {
Isb_perror(‘lsh_signaljob”);
exit(-1);
}
printf(“Job %d is signaled\n”, argv{1]);
exit(0);
}

LSF Programmer’s Guide 71

3 Programming with LSBLIB

Switching a Job To a Different Queue

A job can be switched to a different queue after submission. This can be done even after
the job has already started.

The LSBLIB function to switch a job from one queue to another is:
int |sb_swtchjob(jobld queue);
Below is an example program that switches a specified job to a new queue.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/ | sbat ch. h>

nmai n(argc, argv)
int argc;
char *argv[];

{
if (argc !'=3) {
printf("Usage: %s jobld new_queue\n”, argvi0]);
exit(-1);
}
if (sb_initargvi0]) <0) {
Isb_perror(‘isb_init’);
exit(-1);
}
if (Isb_switchjob(argvfl], argv[2]) < 0) {
Isb_perror(‘lsb_switchjob”);
exit(-1);
}
printf(*Job %d is switched to new queue <%s>\n", argv[l], argv[2]);
exit(0);
}

72

Forcing a Job to Run

After a job is submitted to the LSF Batch system, it remains pending until LSF Batch
determines that it is ready to run (for details on the factors that govern when and where
a job starts to run, see "How LSF Batch Schedules Jobs" in the LSF Batch Administrator’s
Guide). However, a job can be forced to run on a specified list of hosts immediately
using the following LSBLIB function:

int | sb_runjob(runJobReq)
This function takes the r unJobReq structure which is defined in Isbatch.h:

struct runJobReq {

int jobld,; Job ID of the job to start

int nunHosts; Number of hosts to run the job on

char **host nane; Host names where jobs run

int options; RUNJOB_REQ_NORMAL or RUNJOB_REQ_NOSTOP

}

A job can be started and run subject to no scheduling constraints, such as job slot limits.
If the job is started with the options field being 0 or RUNJOB_REQ_NORMAL, then the
job will still be subject to the underlying queue’s run windows and to the threshold of
the queue and of the job’s execution hosts.

To override this, use RUNJOB_REQ_NOSTOP and the job will not be stopped due to
the above mentioned load conditions. However, all LSBLIB’s job munipulation APls
can still be applied to the job.

The following is an example program that runs a specified job on a host that has no
batch job running.

#i ncl ude <stdi o. h>
#i ncl ude <l sf/ | sbat ch. h>

int

mai n(int argc, char **argv)

{
struct hostlnfoEnt *hlnfo;
int nunHosts;

if (argc '=2) {
printf("Usage: 9% jobld\n", argv[0]);

LSF Programmer’s Guide 73

3

74

Programming with LSBLIB

exit(-1);
}

if (Isb_init(argv[0]) <0) {
Isb_perror("lsb_init");
exit(-1);

}

hinfo = I sb_hostinfo(NLL, &unitbsts);
if (hinfo == NWLL) {
I'sb_perror ("l sb_hostinfo");
exit(-1);
}

for (i =0; i < nunmbsts; i++) {
if (hinfo[i].hStatus & (HOBST_STAT_BUSY | HOST_STAT_ WND
| HOST _STAT DI SABLED | HOST STAT LOOKED
| HOST STAT FUL | HOST STAT NOLIM
| HOST _STAT UNLI CENSED | HCST_STAT UNAVA L
| HOBT_STAT_UNREACH))

conti nue;

/* found a vacant host */
if (hinfo[i].numlobs == 0)

br eak;
}
if (i = nuntbsts) {
fprintf(stderr, "Cannot find vacate host to run job < %l >\n",
jobld);
exit(-1);
}

/* The job can be stopped due to |l oad conditions */
runJobReq. opti ons = O;

runJobReq. nuntbsts = 1,

runJobReq. hosts = &l nfo[i]. host

i f (1sb_runjob(& unJobReq) < 0) {
I sb_perror("lsb_runjob");

exit(-1);

exit (0);

Processing LSF Batch Log Files

LSF Batch saves a lot of valuable information about the system and jobs. Such
information is logged by nbat chd in files| sb. event s and | sh. acct under the
directory $LSB_SHAREDI R/ your_cl ust er/ | ogdi r, where LSB_SHAREDI Ris
defined in the | sf. conf file and your_cluster is the name of your LSF cluster.

nbat chd logs such information for several purposes. Firstly, some of the events serve
as the backup of mbat chd’s memory so that in case nbat chd crashes, all the critical
information can be picked up by the newly started nbat chd from the event file to
restore the current state of LSF Batch. Secondly, the events can be used to produce
historical information about the LSF Batch system and user jobs. Lastly, such
information can be used to produce accounting or statistic reports.

CAUTION!
Thel sh. event s file contains critical user job information. It should never
be modified by your program. Writing into this file may cause the loss of
user jobs.

LSBLIB provides a function to read information from these files into a well-defined
data structure:

struct eventRec *|sb_geteventrec(/og fp, [ineNim)
The parameters are:

FILE *log fp; File handle for either an event log file or job log file
nt *| i neNum Line number of the next event record

The parameter | og_f p is as returned by a successful f open() call. The content in

I i neNumis modified to indicate the line number of the next event record in the log file
on a successful return. This value can then be used to report the line number when an
error occurs while reading the log file. This value should be initiated to 0 before
Isb_get eventrec() iscalled for the first time.

LSF Programmer’s Guide 75

3 Programming with LSBLIB

This call returns the following data structure:

struct event Rec {

char versi on] MMX_VERSI ON LEN ; Version number of the nbat chd

int type; Type of the event
int eventTine; Event time stamp
uni on event Log event Log; Event data

b

The event type is used to determine the structure of the data in event Log. LSBLIB
remembers the storage allocated for the previously returned data structure and
automatically frees it before returning the next event record.

| sb_geteventrec() returns NULL and sets| sber r no to LSBE _EOF when there are
no more records in the event file.

Events are logged by nbat chd for many different purposes. There are job-related
events and system-related events. Applications can choose to process certain events
and ignore other events. For example, the bhi st command processes job-related
events only. The currently available event types are listed below.

Table 5. Event Types

Event Type

Description

EVENT_JOB_NEW

New job event

EVENT_JOB_START

nmbat chd is trying to start a job

EVENT_JOB_STATUS

Job status change event

EVENT_JOB_SW TCH

Job switched to a new queue

EVENT_JOB_MOVE

Job moved within a queue

EVENT_QUEUE_CTRL

Queue status changed by LSF admin

EVENT_HOST_CTRL

Host status changed by LSF admin

EVENT_MBD_START

New mbatchd start event

EVENT_MBD DI E

mbatchd resign event

EVENT_MBD_UNFULFI LL

mbatchd has an action to be fulfilled

EVENT_JOB_FI NI SH

Job has finished (logged in Isb.acct only)

76

Table 5. Event Types

Event Type

Description

EVENT_LOAD_| NDEX

Complete list of load index names

EVENT_M G

Job has migrated

EVENT_PRE_EXEC_START

The pre-execution command started

EVENT_JOB_ROUTE

The job has been routed to NQS

EVENT_JOB_MODI FY

The job has been modified

EVENT_JOB_SI GNAL

Job signal to be delivered

EVENT_CAL_NEW

New calendar event I

EVENT_CAL_MODI FY

Calendar modified 1

EVENT_CAL_DELETE

Calendar deleted 1

EVENT_JOB_FORCE

Forcing a job to start on specified hosts

EVENT_JOB_FORWARD

Job forwarded to another cluster

EVENT_JOB_ACCEPT

Job from a remote cluster dispatched

EVENT_STATUS_ACK

Job status successfully sent to submission cluster

EVENT_JOB_EXECUTE

Job started successfully

EVENT_JOB_REQUEUE

Job is requeued

EVENT_JOB_SI GACT

An signal action on a job has been initiated or
finished

EVENT_JOB_START_ACCEPT

Job accepted by sbatchd

1. Available only if the LSF JobScheduler component is enabled.

Note that the event type EVENT_JOB_FI NI SHis used by the | sb. acct file only and
all other event types are used by the | sb. event s file only. For detailed formats of
these log files, see | sb. event s(5) and | sb. acct (5).

LSF Programmer’s Guide

77

3 Programming with LSBLIB

Each event type corresponds to a different data structure in the union;

uni on eventLog {
struct j obNewLog
struct jobStartLog
struct jobStatuslLog
struct jobSw tchLog
struct j obMovelog
struct queueCrl Log
struct hostQrl Log
struct nbdStart Log
struct nbdD eLog
struct unful fillLog
struct j obFi ni shLog
struct | oadl ndexLog
struct nmglog
struct cal endar Log
struct j obForce
struct j obForwardLog
struct j obAccept Log
struct statusAckLog
struct signal Log
struct j obExecut eLog
struct j obRequeuelog

j obNewLog;

j obStart Log;
j obSt at usLog;
j obSwi t chLog;
j obMovelog;
queueC rl Log;
host G rl Log;
nbdSt art Log;
nbdD elLog;
unful fill Log;
j ObFi ni shLog;
| oadl ndexLog;
m glLog;

cal endar Log;

j obFor ceRequest Log

j obFor war dLog;
j obAccept Log;
st at usAckLog;
si gnal Log;

j obExecut eLog;
j obRequeuelog;

struct sigactlLog sigactLog;

struct jobStartAcceptLog j obSt art Accept Log

b

EVENT_JOB_NEW
EVENT_JOB_START
EVENT_JOB_STATUS
EVENT_JOB_SWITCH
EVENT _JOB_MOVE
EVENT_QUEUE_CTRL
EVENT_HOST_CTRL
EVENT_MBD_START
EVENT_MBD_DIE
EVENT_MBD_UNFULFILL
EVENT_JOB_FINISH
EVENT_LOAD_INDEX
EVENT_MIG

Shared by all calendar events
EVENT_JOB_FORCE
EVENT _JOB_FORWARD
EVENT _JOB_ACCEPT
EVENT_STATUS_ACK
EVENT_JOB_SIGNAL
EVENT_JOB_EXECUTE
EVENT_JOB_REQUEUE
EVENT_JOB_SIGACT

EVENT_JOB_START_ACCEPT

The detailed data structures in the above union are defined in | sbat ch. h and
described in| sb_get eventrec(3).

Below is an example program that takes an argument as job name and displays a

chronological history about all jobs matching the job name. This program assumes that

thel sb. event s fileisin/ 1 ocal /| sf/work/cl uster1/1 ogdir.

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <tine. h>

#i ncl ude <l sf/l sbatch. h>

nmai n(argc, argv)
int argc;

78

char *argv[];

char *eventFile = “flocallsfiworki/clusterl/logdirisb.events”;
FILE *p;

struct eventRec *recrod;

int lineNum = O;

char *jobName = argv[1];

int i

if (argc = 2) {
printf("Usage: %s jobname\n”, argv0]);
exit(-1);

}

if (Isb_init@rgvi0]) < 0) {
Isb_perror(‘isb_init");
exit(-1);

}

fo = fopen(eventrile, “r’;

if fp == NULL) {
peror(eventrile);
exit(-1);

}

for () {

record = Ish_geteventrec(fp, &lineNum);
if (record = NULL) {
if (Isbemno == LSBE_EOF)
exit(0);
Ish_perror(‘isb_geteventrec”);
exit(-1);
}

if (strcmp(record->eventLog.jobNewLog.jobName, jobName) = 0)
continue;

switch (record->type) {
struct jobNewlLog *newdaob;
struct jobStartLog *startJob;
struct jobStatusLog *statusLog;

case EVENT JOB_NEW:

LSF Programmer’s Guide

79

3

80

Programming with LSBLIB

newdob = & record->event Log. j obNewLog) ;
printf(‘%s: job <%d> submitted by <%s> from <%s> to <%s> queue\n’,
ctime(&record->eventTime), newJob->jobld, newJob->userName,
newJob->fromHost, newJob->queue);
continue;

case EVENT JOB_START:

startJob = &(record->eventLog.jobStartl og);
printf(‘%s: job <%d> started on ”,
ctime(&record->eventTime), newJob->jobld);
for (i=0; i<startJob->numExHosts; i++)
printf(“<%s> *, startJob->execHostsi]);
printf(\n”);
continue;

case EVENT JOB_STATUS:

statusJob = &(record->eventlLog.jobStatusLog);
printf(‘%s: Job <%d> status changed to: ",
ctime(&record->eventTime), statusJob->jobld);
switch(statusJob->jStatus) {
case JOB_STAT_PEND:
printf(“‘pending\n”);
continue;
case JOB_STAT_RUN:
printf(‘running\n’);
continue;
case JOB_STAT_SSUSP:
case JOB_STAT_USUSP:
case JOB_STAT_PSUSP:
printf(‘suspended\n”);
continue;
case JOB_STAT_UNKWN:
printf(‘unknown (sbatchd unreachable)\n”);

continue;

case JOB_STAT_EXIT:
printf(“exited\n’);
continue;

case JOB STAT DONE:
printf(“done\n”);
continue;

default;
printf(\nError: unknown job status %d\n’, statusJob->jStatus);
continue;

}

default: /¥ Only display a few selected event types*/

conti nue;

}

exit(0);
}

Note that in the above program, events that are of no interest are skipped. The job
status codes are defined in| sbat ch. h. The | sbh. acct file stores job accounting
information and can be processed similarly. Since currently there is only one event

type (EVENT_JOB_FI NI SH) in | sb. acct file, the processing is simpler than the
above example.

LSF Programmer’s Guide 81

4 Advanced Programming
Topics

LSF API provides flexibility for programmers to write complex load sharing
applications. Previous chapters covered the basic programming techniques using LSF
APIs. This chapter will look into a few more advanced topics in LSF application
programming.

Both LSLIB and LSBLIB are used in the examples of this chapter.

Getting Load Information on Selected Load Indices

‘Getting Dynamic Load Information’ on page 28 showed an example that gets load
information from the LIM. Depending on the size of your LSF cluster and the
frequency at which the | s_| oad() function is called, returning the load information
about all hosts can produce unnecessary overhead to hosts and network.

LSLIB provides a function call that will allow an application to specify a selective

number of load indices and get only those load indices that are of interest to the
application.

Getting a List of All Load Index Names

Since LSF allows a site to install an ELIM (External LIM) to collect additional load
indices, the names and the total number of load indices are often dynamic and have to
be found out at run time unless the application is only using the built-in load indices.

LSF Programmer’s Guide 83

4 Advanced Programming Topics

Below is an example routine that returns alist of all available load index names and the
total number of load indices.

#i ncl ude <l sf/lsf. h>

char **get | ndexLi st (Ii stsize)
int *listsize;

{
struct |slnfo *Islnfo;
static char *narneLi st [MAXLOAD NDEX] ;
static int first = 1;
if (first) { /* only need to do so when called for the first time */
Isinfo = Is_info();
if (Islnfo == NULL)
return (NULL);
first =0;
}
if (listSze !'= NULL)
*|istS ze = |slnfo->num ndx;
for (i=0; i<lslnfo->numndx; i++)
naneList[i] = Islnfo->resTabl e[i]. nane;
return (nareList);
}

The above routine returns a list of load index names currently installed in the LSF
cluster. The content of | i st Si ze will be modified to the total number of load indices.
The program would return NULL if the | s_i nf o() function fails. The data structure
returned by | s_i nf o() contains all the load index names before any other resource
names. The load index names start with the 11 built-in load indices followed by site
external load indices (through ELIM).

Displaying Selected Load Indices

By providing a list of load index names to an LSLIB function, you can get the load
information about the specified load indices.

84

The following example shows how you can display the values of the external load
indices. This program uses the following LSLIB function;

struct hostlLoad *|s_| oadi nfo(resreq, nunhosts, options, fronhost,
hostlist, listsize, nanelist)

The parameters for this routine are:

char *resreq; Resource requirement

int *nunhosts; Return parameter, number of hosts returned
int options; Host and load selection options

char *fronhost; Used only if DFT_FROMTYPE is set in options
char **hostli st; A list of candidate hosts for selection

int |istsize; Number of hosts in hostlist

char ***panel i st; Input/output parameter -- load index name list

This call issimilartol s_| oad() except that it allows an application to supply both a
list of load indices and a list of candidate hosts. If both these parameters are NULL, then
it is exactly the same as| s_I oad() function.

The parameter nanel i st allows an application to specify a list of load indices of
interest. the function then returns only the specified load indices. On return this
parameter is modified to point to another name list that contains the same set of load
index names, but in a different order to reflect the mapping of index names and the
actual load values returned in the host Load array:

#i ncl ude <stdi o. h>
#i ncl ude <l sf.lsf. h>

nai n()
{
struct host Load *| oad;
char **| oadNanes;
int num ndx;
i nt nunsr | ndx;
int nHosts;

| oadNares = get | ndexLi st (&wum ndx) ;

if (loadNarmes == NUL) {
Is_perror(“Unable to get load index names\n’);
exit(-1);

LSF Programmer’s Guide 85

4 Advanced Programming Topics

numsrindx = numndx - 11; /* this is the total numof site defined indices*/
if (numbsrindx == 0) {

printf(“No extemal load indices defined\n”);

exit(-1);
}

loadNames +=11, * skip the 11 buitt-in load index names */

load =Is_loadinfo(NULL, &Hosts, 0, NULL, NULL, O, &oadNames);

if load == NULL) {
Is_perror(‘ls_loadinfo’);
exit(-1);

}

printf(“‘Report on extemnal load indices\n™);

for (i=0; i<nHosts; i++) {
printf(“Host %s:\n”, load[i].hostName);
for (=0; j<numUsrindx; j++)
printf(“ index name: %s, value %65.0\n”,
loadNames(j], load[il.li]);

}

The above program uses the get | ndexLi st () function described in the previous
example program to get a list of all available load index names. Sample output from
the above program follows:

Report on external load indices
Host hostA:
index name: usr_tmp, value 87
index name: num_licenses, value 1
Host hostD:
index name: usr_tmp, value 18
index name: num_licenses, value 2

Writing a Parallel Application

LSF provides job placement and remote execution support for parallel applications.
LIM’s host selection or placement service can return an array of good hosts for an

86

4

application. The application can then use remote execution service provided by RES to
run tasks on these hosts concurrently.

In this section are examples of writing a parallel application using LSLIB.
| s_rtask() Function

‘Running a Task Remotely’ on page 43 discussed the use of | s_r execv() function for
remote execution. There is another LSLIB call for remote execution: | s_rt ask().
These two functions differ in how the client side behaves.

Thel s_rexecv() isuseful when local side does not need to do anything but wait for
the remote task to finish. After initiating the remote task, | s_r execv() replaces the
current program with the Network 1/0 Server (NIOS) by calling the execv() system
call. The NIOS then handles the rest of the work on the local side: delivering input/
output between local terminal and remote task and exits with the same status as the
remote task.| s_rexecv() may be considered as the remote execution version of the
UNIX execv() system call.

I s_rtask() provides more flexibility if the client side has to do other things after the
remote task is initiated. For example, the application may want to start more than one
task on several hosts. Unlike | s_rexecv(),|s_rtask() returns immediately after
the remote task is started. The syntax of | s_rt ask() is:

int |s_rtask(host, argv, options)

The parameters are:

char *host; Name of the remote host to start task on
char **argy; Program name and arguments
int options; Remote execution options

The opt i ons parameter is similar to that ofthel s_r execv() function. This function
returns the task ID of the remote task which can then be used by the application to
differentiate possibly multiple outstanding remote tasks. When a remote task finishes,
the status of the remote task is sent back to the NIOS running on the local host, which
then notifies the application by issuing a SI GUSR1 signal. The application can then call
I s_rwait () to collect the status of the remote task. Thel s_rwai t () behaves in

LSF Programmer’s Guide 87

4 Advanced Programming Topics

much the same way as the wai t (2) systemcall.| s_rtask() may be considered as
a combination of remote f or k() and execv().

Note
Applications calling | s_rt ask() must set up signal handler for the SI GUSR1
signal, or the application could be killed by SI GUSR1.

You need to be careful if your application handles SI GTSTP, SI GTTI N, or SI GTTQU
signal. If handlers for these signals are SI G DFL,thel s_rt ask() function
automatically installs a handler for them to properly coordinate with the NIOS when
these signals are received. If you intend to handle these signals by yourself instead of
using the default set by LSLIB, you need to use the low level LSLIB function

| s_stoprex() before the end of your signal handler.

Running Tasks on Many Machines

Below is an example program thatuses| s_rtask() torunrm -f /tnp/coreon
user specified hosts.

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
#incl ude <l sf/lsf.h>

main (argc, argv)
int argc;
char *argv[];

char *command[4] ;
int nunHosts;

int i;

int tid;

if (argc <= 1) {
printf(“Usage: %s hostl [host2 ... \n");
exit(-1);

}

numHosts =argc- 1;
command[0] =“rm”;
command[1] =“f
command[2] = “ftmp/core”;

88

command[3] = NULL;

if (Is_initrex(nunsts, 0) < 0) {
Is_perror(‘is_initrex”);
exit(-1);

}

signal(SIGUSR1, SIG_IGN);

/* Run command on the specified hosts */
for (i=1; i<=numHosts; i++) {
if ((tid = Is_rtask(argv[i], command, 0)) < 0) {
fprintf(stderr, “Isrtask failed for host %6s: %s\n”,
argviil, Is_sysmsg();
exit(-1);
}
printf(“Task %d started on %s\n", tid, argvi));
}

while (numHosts) {
LS WAIT_T status;

tid =Is_rwait(&status, O, NULL);
if (tid < 0) {
Is_perror(‘is_rwait");
exit(-1);
}
printf(“task %od finished\n”, tid);

numHosts—;

}

exit(0);
}

The above program set the signal handler for SI GUSR1 to SI G_I GN. This causes the
signal to be ignored. Ituses| s_rwai t () to poll the status of remote tasks. You could
set a signal handler so that it calls| s_rwai t () inside the signal handler.

The task ID could be used to preform an operation on the task. For example, you can
send a signal to a remote task explicitly by callingls_rkill ().

LSF Programmer’s Guide 89

4 Advanced Programming Topics

If you want to run the task on remote hosts one after another, instead of concurrently,
youcancalll s_rwait () rightafterl s _rtask().

Also note the use of | s_sysnsg() instead of | s_perror (), which does not allow
flexible printing format.

The above example program produces output similar to the following:

%a. out hostD host A hostB
Task 1 started on hostD
Task 2 started on host A
Task 3 started on hostB
Task 1 finished

Task 3 finished

Task 2 finished

Note that remote tasks are run concurrently, so the order in which tasks finish is not
necessarily the same as the order in which tasks are started.

Finding out Why the Job Is Still Pending

‘Getting Information about Batch Jobs’ on page 63 showed how to get information
about submitted jobs. It is frequently desirable to know the reasons why jobs are in
certain status. The LSBLIB provides a function to print such information. This section
describes a routine that prints out why a job is in pending status.

When | sb_readj obi nf o() reads a record of a pending job, the variables r easons
and subr easons contained in the returned j obl nf oEnt data structure can be used
to call the following LSBLIB function to get the reason text explaining why the job is
still in pending state:

char *| sb_pendr eason(pendReasons, subReasons, | d)

where pendReasons and subReasons are integer reason flags as returned by a
| sb_readj obi nfo() function while | d is a pointer to the following data structure:

struct | oadl ndexLog {
int nldx; Number of load indices configured for the LSF cluster

90

char **nane; List of the load index names

}

The example program below should be called by your application after
| sb_readj obi nfo() iscalled.

#i ncl ude <stdio. h>
#i ncl ude <l sf/ | sbat ch. h>

char *
reasonToText (reasons, subreasons)
int reasons;
i nt subreasons;
{
struct | oadl ndexLog i ndi ces;
/* first get the list of all load i ndex names */
i ndi ces. name = get | ndexLi st (& ndi ces. nl dx) ;
return (I sb_pendreason(reasons, subreasons, & ndices));
}

A similar routine can be written to print out the reason why a job was suspended. The
corresponding LSBLIB call is:

char *| sb_suspreason(reasons, subreasons, |[d)

The parameters for this function are the same as those for thel sb_pendr eason()
function.

Reading | sf. conf Parameters

It is frequently desirable for your applications to read the contents of the | sf. conf
file or even define your own site specific variables in the | sf. conf file.

Thel sf. conf file follows the syntax of Bourne shell, and therefore could be sourced

by a shell script and set into your environment before starting your C program. Your
program can then get these variables as environment variables.

LSF Programmer’s Guide 91

4 Advanced Programming Topics

LSLIB provides a function to read the | sf. conf variables in your C program:
int |s_readconfenv(paranii st, confPath)

where conf Pat h is the directory in which thel sf . conf fileis stored. par anLi st is
an array of the following data structure:

struct config_param{
char *par ani\ang; Name of the parameter, input
char *paranVal ue; Value of the parameter, output

}

| s_readconfenv() reads the values of the parameters defined in | sf. conf
matching the names described in the par anli st array. Each resulting value is saved
into the par anVal ue variable of the array element matching par aniNane. If a
particular parameter mentioned in the paramList is not defined in| sf . conf , thenon
return its value is left NULL.

The following example program reads the variables LSF_CONFDI R, MY_PARAML, and
MY_PARAMR in| sf. conf file and displays them on screen. Note that LSF_CONFDI R
is a standard LSF parameter, while the other two parameters are user site-specific. It

assumes | sf. conf isin/ et c directory.

#i ncl ude <stdio. h>
#incl ude <l sf/lsf.h>

struct config_param nyParans[] =

{

#define LSF CONFD R 0
{"LSF_CONFDIR", NULL},

#define MY_PARAM1 1
{"MY_PARAML", NULL),

#define MY_PARAM2 2
{'MY_PARAM?2", NULL),
{NULL, NULL}

}

main()
{
if (Is_readconfenv(myParams, “/etc”) < 0) {
Is_perror(‘ls_readconfenv’);
exit(-1);

92

}

i f (nyParans[LSF_OQONFD R . paranVval ue == NULL)
printf(“L.SF_CONFDIR is not defined in /etc/isf.confin’);

else
printf(“LSF_CONFDIR=%s\n", myParams[LSF_CONFDIR].paramValue);

if (myParams[MY_PARAM1].paramValue == NULL)
printf(“MY_PARAML1 is not defined in /etc/sf.confin®);
else
printf(“MY_PARAM1=%s\n", myParams[MY_PARAM1].paramValue);

if (myParams[MY_PARAM2].paramValue = NULL)
printf(“MY_PARAM?2 is not defined\n”;
else
printf(“MY_PARAM2=%s\n", myParams[MY_PARAM2].paramValue);

exit(Q);
}

The par anVal ue parameter in the conf i g_par amdata structure must be initialized
to NULL and is then modified to point to a result string if a matching par amNane is
found in thel sf. conf file. The array must end with a NULL par anNane.

Signal Handling in Windows NT

LSF uses the UNIX signal mechanism to perform job control. For example, the bkill
command in UNIX normally results in the signals SIGINT, SIGTERM, and SIGKILL
being sent to the target job. Signal-handling code that already exists in the in UNIX
applications allows them to shut down gracefully, in stages. In the past, the same bkill
command in Windows NT has been accomplished by a call to TerminateProcess(),
which terminates the application immediately and does not allow it to release shared
resources or clean up the way a UNIX application can.

LSF version 3.2 has been modified to provide signal notification through the Windows
NT message queue. LSF now includes messages corresponding to common UNIX
signals. This means that a customized Windows NT application can process these
messages.

LSF Programmer’s Guide 93

4 Advanced Programming Topics

For example, the bkill command now sends the SIGINT and SIGTERM signals to
Windows NT applications as job control messages. An LSF-aware Windows NT
application can interpret these messages and shut down neatly.

To write a Windows NT application that takes advantage of this feature, register the
specific signal messages that the application will handle. Then modify the message
loop to check each message before dispatching it, and take the appropriate action if it
is a job control message.

The following examples show sample code that might help you to write your own
applications.

Job Control in a Windowed Application

This is an example program showing how a windowed application can receive NT job
control notification from the LSF system.

Catching the notification messages involves:

1) Registering the windows messages for the signal(s) that you want to receive (in
this case, SIGTERM).
2) Inyour GetMessage loop, looking for the message(s) you want to catch.

Note that you can’t DispatchMessage() the message, since it is addressed to the thread,
not the window. This program just displays some information in its main window, and
waits for SIGTERM. Once SIGTERM is received, it posts a quit message and exits. A
real program could do some cleanup when the SIGTERM message is received.

/* WNICNTL. C */

#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>

#defi ne BUFSI ZE 512
static UNT nsgS gTerm
static int xpos;

static int pid_ypos;

static int tid_ypos;
static int nsg_ypos;

94

static int pid_buf_|en;
static int tid_buf_len;
static int nsg_buf_|en;
static char pid_buf[BUFS ZF ;
static char tid_buf[BUFS ZF ;
static char nsg_buf [BUFS ZE ;

LRESULT WNAPI Mai nWwidPr oc(HVIND hwid, U NT nsg, WPARAM wPar am) LPARAM | Par an)
{

HDC hDG

PAI NTSTRUCT ps;
TEXTIMETR C tm
switch (nsg) {

case W CREATE
hDC = Get DO hWid) ;

Get Text Metri cs(hDC & m);
Rel easeDQ hwid, hDO) ;

xpos = 0;
pi d_ypos = 0;
tid_ypos = pid_ypos + tmtntkight;
nsg_ypos = tid ypos + tmtnteight;
br eak;

case W PA NT:

hDC = Begi nPai nt (hWid, &ps);

Text Qut (hDC, xpos, pid_ypos, pid_buf, pid buf_len);
Text Qut (hDC, xpos, tid ypos, tid_buf, tid buf_len);
Text Qut (hDC, xpos, nsg_ypos, nsg_buf, nsg _buf _|en);
EndPai nt (hWid, &ps);

br eak;

case WM DESTROY:

Post Qui t Message(0) ;
br eak;

defaul t:
return Def WndowPr oc(hWid, nsg, wParam | Param);

LSF Programmer’s Guide 95

4 Advanced Programming Topics

return O;

}

int WNAPI WnMai n(H NSTANCE hl nst ance, H NSTANCE hPr evl nst ance,
LPSTR | pOndLi ne, i nt nQmShow)

{
ATQM r c;

WA\DCLASS wc;
HAD hwid;
MSG nsg;

/* Qreate and register a wi ndows class */

if (hPrevinstance == NULL) {

.style = CS_ OMDC | CS VREDRAW| CS_HREDRAW
.| pf nWAdProc = Mai nWidPr oc;

cbd sExtra = 0O;

. cbWidExtra = O;

. hInstance = hl nst ance;

.hlcon = Loadl con(NULL, 1D _APPLI CATIQN) ;
.hQursor = LoadQursor (NULL, | DC ARRON;

. hbr Background = (HBRUSH (COLCR WNDON+ 1) ;

EE5888858

rc = Regi sterd ass(&xc);
}

/* Register the nmessage we want to catch */
nsgS gTer m = Regi st er WndowMessage(" S| GTERM) ;

/* Format sone output for the nain w ndow */

sprintf(pid buf, "My process IDis: %", GetQurrentProcessld());
pid_buf _len = strlen(pid_buf);

sprintf(tid buf, "My thread IDis: %", GetQurrentThreadl d());
tid_buf_len = strlen(tid buf);

sprintf(msg_buf, "Message IDis: %", nsgSi gTerny;

nsg_buf |en = strlen(nsg_buf);

/* Qreate the mai n wi ndow */
hwid = O eat eW ndow("WnJnt |1 A ass”,

"Wndows Job Control Deno App",
VE_OVERLAPPEDW NDOW

96

0,
0,
CW USEDEFALLT,
CW USEDEFALLT,
NULL,
NULL,
hl nst ance,
NULL) ;
ShowW ndow(hwid, nQmdShow) ;

/* Enter the message | oop, waiting for nsgS gTerm Wen we get it, just post a
quit nessage */

whil e (Get Message(&sg, NLL, 0, 0)) {
if (nmsg. message == nsgS gTern) {
Post Qui t Message(0);
} else {
Transl at eMessage(&180) ;
D spat chMessage(&nsQ) ;
}

}
return nsg. wPar am

}

Job Control in a Console Application

This is an example program showing how a console application can receive NT job
control notification from the LSF system.

Catching the notification messages involves:
1) Registering the windows messages for the signals that you want to receive (in this

case, SIGINT and SIGTERM).

2) Creating a message queue by calling PeekMessage (this is how Microsoft suggests
console apps should create message queues).

3) Enter a GetMessage loop, looking for the message you want to catch.

Note that you don’t DispatchMessage here, since you don’t have a window to dispatch
to.

LSF Programmer’s Guide 97

4 Advanced Programming Topics

This program just sits in the message loop, waiting for SIGINT and SIGTERM, and
displays messages when those signals are received. A real application would do clean-
up and exit if it received either of these signals.

/* GONJONTL. C */

#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
int mai n(voi d)

{
DWRD pid = GetQurrent Processl d();

DNMRD tid = GetQurrent Threadl d() ;

U NT nsgSi gl nt = Regi st er WndowMessage("SI G NTI™);
U NT nsgSi gTer m = Regi st er WndowMessage(" Sl GTERM) ;
MBG nsg;

/* Make a nessage queue -- this is the nethod suggested by M5 */

PeekMessage(&sg, NULL, WM USER WM USER PM NCREMDVE) ;
printf("M process id: %l\n", pid);

printf("M thread id: %\n", tid);

printf("SIANTI nessage id: %\n", nsgSgint);
printf("S GTERM message id: %\ n", nsgS gTern);
printf("Entering loop...\n");

fflush(stdout);

whil e (Get Message(&sg, NULL, 0, 0)) {

printf("Recei ved nessage: %l\n", nsg.nessage);

if (nsg. message == nsgSigint) {
printf("SIANT received, continuing.\n");

} else if (nsg. nessage == nsgS gTern) {
printf("S GIERMreceived, continuing.\n");

}

fflush(stdout);

}

printf("Exiting.\n");
fflush(stdout);
return BEXIT_SUCCESS,

98

A List of LSF API Functions

This appendix lists all the LSF API functions for your reference. Many of the functions
listed below are not documented in this guide, but are described in detail in the on-line
man pages. See |l sl i b(3) and | sbl i b(3) for details of these functions.

LSLIB Functions

These are the function calls provided by the LSF base system API. The function calls
are listed by service categories.

Cluster Configuration Information

struct Islnfo *Is_info(void)
Get cluster-wide configuration information.

char *|s_getcl ustername(void)
Get the name of the local cluster.

char *|s_get mast er nane(voi d)
Get the name of the master host.

float *1s_getnodel factor(char *nodel nane)
Get the CPU factor of the given host model.

char *|s_gethosttype(char *hostnane)
Get the host type of the given host.

char *|s_get host nodel (char *host nane)
Get the host model of the given host.

LSF Programmer’s Guide 99

A List of LSF API Functions

float *ls_gethostfactor(char *hostnane)
Get the CPU factor of the given host.

struct hostlnfo *Is_gethostinfo(char *resreq, int *numhosts,
char **hostlist, int listsize, int options)
Get host related configuration information.

int |s_readconfenv(struct config_param *paranLi st,
char *conf Pat h)
Get the variables defined in | sf. conf.

Load Information and Placement Advice

struct hostLoad *ls_| oad(char *resreq, int *nunhosts,
int options, char *fromhost)
Get load information of qualified hosts, simple version.

struct hostlLoad *Is_| oadi nfo(char *resreq, int *nunhosts,
int options, char *fronmhost, char **hostli st,
int listsize, char ***indxnanelist)
Get load information of qualified hosts, generic version.

struct hostlLoad *I|s_| oadof hosts(char *resreq, int *numhosts,
int options, char *fronmhost, char **hostli st,
int listsize)
Get load information of the qualified hosts from the given list of hosts.

struct hostLoad *|s_| oadoftype(char *resreq, int *nunhosts,
int options, char *fronhost, char *hosttype)
Get load information about hosts of the given host type.

char **|Is_placereq(char *resreq, int *numhosts, int options,
char *fromhost)
Get the best qualified hosts.

char **Is_pl aceof hosts(char *resreq, int *nunhosts,
int options, char *fronmhost, char **hostli st,
int listsize)
Get the best qualified hosts from the given list of hosts.

100

A

char **|I s _placeoftype(char *resreq, int *numhosts, int options,
char *fromhost, char *hosttype)
Get the best qualified hosts with the given host type.

int |s_|oadadj(char *resreq, struct placelnfo *hostlist,

int listsize)
Adjust the load of the given host(s).

Task List Manipulation

char *ls resreq(char *task)
Get resource requirements of task in the remote task list.

int Is_eligible(char *task, char *resreqstr, char node)
Get resource requirements of t ask in the task list indicated by node.

int |s_insertrtask(char *task)
Insert t ask into theremotet ask list.

int Is_insertltask(char *task)
Insert t ask into the local task list.

int |s_deletertask(char *task)
Removet ask from the remote task list.

int |s_deleteltask(char *task)
Remove t ask from the local task list.

int Is listrtask(char ***taskList, int sortflag)
Get all tasks in the remote task list.

int Is listltask (char ***taskList, int sortflag)
Get all tasks in the local task list.

Remote Execution and Task Control

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

LSF Programmer’s Guide 101

A List of LSF API Functions

int Is_initrex(int nunPorts, int options)
Initialize for remote execution or file operation.

int |s_connect(char *hostnane)
Establish a connection with a remote RES.

int |s_rexecv(char *host, char **argv, int options)
Remote execv(2). Execute ar gv on host with the local environment.

int |s_rexecve(char *host, char **argv, int options,
char **envp)
Remote execve(2) . Execute ar gv on host with the given environment.

int Is_rtask(char *host, char **argv, int options)
Start ar gv on host with local environment.

int |s_rtaske(char *host, char **argv, int options,
char **envp)
Start ar gv on host with the given environment.

int s rwait(LS WAIT T *status, int options, struct rusage *ru)
Remotewai t (2) .

int Is rwaittid(int tid, LS WAIT_T *status, int options,
struct rusage *ru)
Remotewai t pi d(2).

int Is rkill(int tid, int sig)
Remoteki I | (2).

int |s rsetenv(char *host, char **envp)
Reset the environment for remote tasks on host ..

int Is _chdir(char *host, char *clntdir)
Set the working directory for remote tasks on host ..

int |s_stoprex(void)
Inform the NIOS to suspend itself and restore local tty settings.

102

Remote File Operation

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

int I|s_ropen (char *host, char *fn, int flags, int node)

Remote open(2) onhost.

int s rclose(int rfd)
Remote cl ose(2) on host.

int Is rwite(int rfd, char *buf, int Ilen)
Remotewr it e(2) onhost.

int s rread(int rfd, char *buf, int len)
Remote r ead(2) on host .

off t Is riseek(int rfd, off t offset, int whence)
Remote Iseek(2) on host .

int s rfstat(int rfd, struct stat *buf)
Remote f st at (2) on host.

int |s_ rstat(char *host, char *fn, struct stat *buf)
Remote st at (2) on host .

int |s_getmthost (char *file)
Returns the host name of the file server for fi | e.

char *lIs_rgetmmthost(char *host, char *file)
Return the host name of the file server for fi | e on host.

int s rfcontrol (int command, int arg)
Control the behavior of remote file operations.

LSF Programmer’s Guide

103

A List of LSF API Functions

Administration Operation

int Is_lockhost(tine t duration)
Set LIM status of the local host to “locked” fbur at i on secondsThe application
must be a setuid to root program to use this function.

int |s_unlockhost(void)
Cancel a previous lock operation. The application must be a setuid to root
program to use this function.

int Is_lincontrol (char *hostnane, int opCode)
Perform a LIM administration operation as specified by opCode. The
application must be a setuid to root program to use this function.

int |s rescontrol (char *host, int opCode, int options)
Perform a RES administrative operation as specified by opCode. The use of

this function is subject to authentication protocols described in
‘Authentication’ on page 17.

Error Handling

void |s_perror(char *usrMsg)
Print usr Msg followed by the LSLIB error message associated with | serr no.

char *ls_sysnsg(void)
Return the LSLIB error message associated with | serr no.

void |Is_errlog(FILE *fp, const char *fnt, ...)
Logging an LSLIB error message with time stamp.

Miscellaneous

int |s fdbusy(int fd)
Test if a file descriptor f d is in use or reserved by LSF.

104

LSBLIB Functions

These are function calls provided by the LSF Batch system API. The functions are listed
by service categories.

Initialization

I sb_init(char *appNane)
Initialize an LSF Batch application.

LSF Batch System Information

struct grouplnfoEnt *Isb_hostgrpi nfo(char **groups,
i nt *nunGroups, int options)
Get membership of the LSF Batch host groups.

struct grouplnfoEnt *Isb_usergrpinfo(char **groups,
i nt *nunGroups, int options)
Get membership of the LSF Batch user groups.

struct paraneterlnfo *|Isb_paraneterinfo(char **nanes,
int *nunlsers, int options)
Get the LSF Batch cluster parameters.

struct hostlnfoEnt *lsb_hostinfo(char **hosts, int *nunHosts)
Get information about the LSF Batch server hosts or host groups.

struct userlnfoEnt *lsb_userinfo(char **users, int *numJsers)
Get system information about the LSF Batch users and user groups.

struct hostPartlnfoEnt *Isb _hostpartinfo(char **hostParts,
i nt *nunHost Parts)
Get information about the LSF Batch host partitions.

.struct queuel nfoEnt *|sb_queuei nfo(char **queues,

i nt *nunfQueues, char *host, char *userNane, int options)
Get information about the LSF Batch queues.

LSF Programmer’s Guide 105

A List of LSF API Functions

Job Manipulation

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

int |sb submt(struct subnmit *jobSubReq,
struct submtReply *jobSubReply)
Submit a job to the LSF Batch system.

int |sb nodify(struct subnmit *jobSubReq,
struct subnmitReply *jobSubReply, int jobld)
Change the attributes of an already submitted job.

int Isb_signaljob(int jobld, int sigValue)
Send job j obl d signal si gVal ue.

int I|sb _chkpntjob (int jobld, time_t period, int options)
Checkpoint the job j obl d.

int |sb deletejob (int jobld, int tines, int options)
Delete a calendar-driven job.

int Isb mg(struct submig *m g, int *badHostI dx)
Migrate a job from one host to another.

int |sb_novejob(int jobld, int *position, int opCode)
Change the position of a pending job within its queue.

int Isb switchjob(int jobld, char *queue)
Switch a job j obl d to queue queue.

Job Information

int |sb_openjobinfo(int jobld, char *jobName, char *user,
char *queue, char *host, int options)
Open a job information stream for the matching job(s) with nbat chd.

struct joblnfoEnt *I|sb_readjobinfo(int *nore)
Read a job record from the opened job information stream.

106

voi d | sb_cl osej obi nfo(voi d)
Close a job information stream.

char *|sb_suspreason(int reasons, int subreasons,
struct | oadl ndexLog *Id)
Convert suspending reason codes into text.

char *|sb_pendreason(int reasons, int subreasons,
struct | oadl ndexLog *Id)
Convert pending reason codes into text.

char *|sb_peekjob(int jobld)

Get the name of the job’s buffered output file. This function is subject to the

authentication protocols described in ‘Authentication’ on page 17.
Event File Processing

struct eventRec *lsb_geteventrec(FILE *log fp, int *lineNunm
Read an event record from the opened log file.

LSF Batch Administration

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

int Isb_reconfig(void)
Reconfigure the LSF Batch system using the current configuration files.

int |sb_hostcontrol (char *host, int opCode)
Open, close host for batch jobs, or restart, shut down sbat chd on host .

int |sb_queuecontrol (char *queue, int opCode)
Change the status of an LSF Batch queue.

Calendar Manipulation

These functions can be used only if the LSF JobScheduler component is enabled.

LSF Programmer’s Guide

A List of LSF API Functions

int |sb_cal endarop(int opCode, int numNanes, char **nanes,
char *desc, char *tineEvents, int options, char **badStr)
Add, modify, or delete a calendar.

struct cal endarl nfoEnt *I|sb_cal endari nfo(char **cal endars,

i nt *nuntCal endars, char *user)
Get calendar information.

Error Handling

void | sb_perror(char *usrMsgQ)
Print the LSBLIB error message associated with | sber r no together with
usr Msg.

char *|sb_sysnsg (void)
Return the LSBLIB error message associated with | sber r no.

108

Index

A
address (Platform) xi
authentication..................... 17
privileged port................. 17
B
batch job
ID.. 64
information. 63
batch serverhost................. 5, 48
bhist............................ 76
BSD compatibility library 13
built-in load indices 83
C
cluster configuration information19
console application
Windows NT 97
contacting Platform Computing. xi
CPUfactor........................ 20
D
defaultqueue 48
default resource requirements 25, 60
DEFAULT RLIMIT 60
documentation X
dynamic load information........... 28
host-based resource. 28
shared resource 32

LSF Programmer’s Guide

E
effectiveuserID................... 43
ELIM (External LIM). 83
errorhandling 14
eventrecord...................... 75
external load indices. 85
F
fax numbers (Platform) xi
forceajob................., 73
functions
Is _getclusternane()....... 15
I s_gethostfactor()........ 25
Is gethostinfo() 23
Is_gethostnodel () 25
I s _gethosttype() 25
Is getnmasternanme() 20
Is info()................ 19, 84
Is initrex() 42
Is load()................ 28, 83
Is loadinfo() 85
I's perror() 15, 90
I s_placeofhosts() 38
I's placereq() 37
I s_readconfenv() 92
Is resreq() 39, 45
Is rexecv() 43, 87
Is rexecve()o.... 44
Is rkill()coooviinnt. 89
Is rtask() 87
Is rwait() 87
I's stoprex() 88
I's sysmsg() 15, 90
109

Index

I sb_closejobinfo() 67
| sb_geteventrec().......... 75
I sb_hostinfo() 52
Isb_init() 17, 47
Isb modify()................ 56
| sb_openjobinfo().......... 65
| sb_paraneterinfo() 16
| sb_pendreason() 68, 90
Isb_perror()............. 15,51
I sb_queueinfo() 48, 50
I sb_readjobinfo()....... 65, 90
Isb_signaljob() 71
Isb_ submit()................ 56
| sb_suspreason() 91
Isb_switchjob() 72
G
guides.o i X
H
header files
Isbatch.h 13
Isf.h.o oo 12
help........oo X, Xi
host-based resource information 28
host configuration information 23
host dispatch window 55
hostmodel........................ 20
hosttype.......................... 20
I
ID, batchjob 64

110

J
job
force......... ... i 73
ID ..o 64
job accounting information 81
jobcontrol........................ 93
console application 97
windowed application 94
jobID.... .. 71
job information connection 64
job modification................... 56
jobrecords 63
jobsubmission.................... 56
joblnfoEnt 67
job-relatedevents 76
L

LIM (Load Information Manager) 3
linking applications with LSF APIs .. 13

load indexnames 32,84
load threshold values 50
Isb.acct 75,77
Isbh.events 75
LSB ARRAY IDX 64
LSB ARRAY JOBID............... 64
LSB JOBID...........coviiinn. 64
Isb runjob..................... 73
Isb submt()................... 63
| sbatch. h
ALL JOB........coiiin 65
CURJIOB..........oviiiei 65
DONE JOB.........coovvnnn, 65
HOST_STAT BUSY............. 55
HOST_STAT DI SABLED........ 55
HOST _STAT FULL............. 55
HOST_STAT LOCKED.......... 55
HOST_STAT NO LIM.......... 55

HOST _STAT OK................ 56
HOST_STAT UNAVAIL.......... 55
HOST_STAT _UNLI CENSED...... 55
HOST_STAT _UNREACH.......... 55
HOST _STAT WND............. 55
JGRP_ARRAY INFO............ 65
LAST JOBoviiieennn 65
PEND JOBcvovvvnn 65
SUSP JOBoiiei e 65
Isberrno........................ 15
LSBE EOF 76
LSBE QUEUE CLOSED.......... 61
LSBE QUEUE USE 60
Serrnoovviii.. 15
LSF administrator. 55
LSF architecture 1
LSFBase..........cooviiniiiiinn.. 1
administrative service. 10
APlservices 7
application 4

configuration information service .8
dynamic load information service .8

master selection service 9
placement advice service 8
remote execution service 9
remote file operation service. 10
serverhost 3
task list manipulation service 9
LSFBaselibrary 2
LSFBatch.......................... 1
administration service 11
job manipulation service 11
log file processing service 11
serverhosts..................... 5
structureof..................... 5
LSFBatchlibrary 3
LSF Enterprise Edition............... X
LSF JobScheduler 7
calendar manipulation service ...11
LSF Product Suite. 1

LSF Programmer’s Guide

LSF Standard Edition X
LSF Suite documentation............ X
LSF Suite products iX
Isf.conf 12,91
LSF AUTH. 43
LSF CONFDIR 92
Isf.h
DEFAULT RLIMT............. 60
DFT_ FROMTYPE............... 29
EFFECTIVE................... 29
EXACT 29
FIRST RES SOCK............. 43
INFINIT INT 51, 56
INFINNT LOAD............... 31
KEEPU D..................... 43
LSF _DEFAULT _SOCKS......... 43
LSF RLIMNLIMTS 58
NORVALIZE................... 29
OK ONLY .o 29
REXF _USEPTY 44
Isrtasks ...l 38
lsrun.......... i 45
M
macros
LS ISBUSY() 32
LS ISBUSYON()ovvnnt 32
LS ISLOCKED() ... vvvvvnn.. 32
LS ISOK() ..ovviiinns 32
LS ISUNAVAIL() 32
mailing address (Platform) xi
masterLIM........................ 3
nbatchd.......................... 5
modify submittedjob.............. 63
N

NIOS (Network 170 Server) ... 9, 40, 87

111

Index

NT
console application............. 97
jobcontrol..................... 93
signal handling 93
windowed application.......... 94
number of load indices 84
O
online documentation xi
order requirement 26
P
parallel applications. 86
phone numbers (Platform) xi
placement decision................. 36
Platform Computing Corporation xi
privileged port protocol 17
Production Job Scheduler, see LSF
JobScheduler
pseudo-terminal 40, 44
R
raw run queue length 29
realuserID 43
reasonflags 90
remote execution 40
remotetask list................. 38,59

RES (Remote Execution Server)3,40
resource information

dynamic hostbased 28
dynamicshared................ 32
resource NAMes 25

112

S
sbatchd.......................... 5
send signals to submitted jobs 71
setuid programs. 17
shared resource information 32
SIGINT ... 94
signal handler 88, 89
signal handling
Windows NT. 93
SIGTERM 94
SIGUSRL. ... 87
structure
hostinfo.................... 23
hostInfoEnt 52
queuelnfoEnt 48
submit ... 56
submtReply 57
SUPPOIt . ..o xi
switchajob....................... 72
system-related events.............. 76
T
taskID. ... 87
task listo i 9
technical assistance................. xi
telephone numbers (Platform) xi
type requirement. 26
W
windowed application
Windows NT. 94
Windows NT 14
console application 97
jobcontrol 93
signal handling................ 93
windowed application 94

	Preface
	Audience
	LSF Suite 3.2
	Related Documents
	Technical Assistance

	1 Introduction
	LSF Product Suite and Architecture
	LSF Base
	LSF Batch
	LSF JobScheduler
	LSF MultiCluster
	LSF Base System
	Application and LSF Base Interactions
	LSF Batch System
	LSF JobScheduler System

	LSF API Services
	LSF Base API Services
	Configuration Information Service
	Dynamic Load Information Service
	Placement Advice Service
	Task List Manipulation Service
	Master Selection Service
	Remote Execution Service
	Remote File Operation Service
	Administration Service

	LSF Batch API Services
	LSF Batch System Information Service
	Job Manipulation Service
	Log File Processing Service
	LSF Batch Administration Service
	Calendar Manipulation Service

	Getting Started with LSF Programming
	lsf.conf File
	LSF Header Files
	lsf.h
	lsbatch.h

	Linking Applications with LSF APIs
	Error Handling
	lserrno
	lsberrno

	Example Applications
	Example Application using LSLIB
	Example Application using LSBLIB

	Authentication

	2 Programming with LSLIB
	Getting Configuration Information
	Getting General Cluster Configuration Information
	Getting Host Configuration Information

	Handling Default Resource Requirements
	Getting Dynamic Load Information
	Getting Dynamic Host-Based Resource Information
	Getting Dynamic Shared Resource Information

	Making a Placement Decision
	Getting Task Resource Requirements
	Using Remote Execution Services
	Remote Execution Mechanisms
	Initializing an Application for Remote Execution
	Running a Task Remotely

	3 Programming with LSBLIB
	Initializing LSF Batch Applications
	Getting Information about LSF Batch Queues
	Getting Information about LSF Batch Hosts
	Job Submission and Modification
	Getting Information about Batch Jobs
	LSF Batch Job ID

	Job Manipulation
	Sending a Signal To a Job
	Switching a Job To a Different Queue
	Forcing a Job to Run

	Processing LSF Batch Log Files

	4 Advanced Programming Topics
	Getting Load Information on Selected Load Indices
	Getting a List of All Load Index Names
	Displaying Selected Load Indices

	Writing a Parallel Application
	ls_rtask() Function
	Running Tasks on Many Machines

	Finding out Why the Job Is Still Pending
	Reading lsf.conf Parameters
	Signal Handling in Windows NT
	Job Control in a Windowed Application
	Job Control in a Console Application

	A List of LSF API Functions
	LSLIB Functions
	Cluster Configuration Information
	Load Information and Placement Advice
	Task List Manipulation
	Remote Execution and Task Control
	Remote File Operation
	Administration Operation
	Error Handling
	Miscellaneous

	LSBLIB Functions
	Initialization
	LSF Batch System Information
	Job Manipulation
	Job Information
	Event File Processing
	LSF Batch Administration
	Calendar Manipulation
	Error Handling

	Index

